473 research outputs found

    Photocatalytic production of organic compounds from CO and H2O in a simulated Martian atmosphere

    Get PDF
    [14C]CO2 and [14C]organic compounds are formed when a mixture of [14C]CO and water vapor diluted in [12C]CO2 or N2 is irradiated with ultraviolet light in the presence of soil or pulverized vycor substratum. The [14C]CO2 is recoverable from the gas phase, the [14C]organic products from the substratum. Three organic products have been tentatively identified as formaldehyde, acetaldehyde, and glycolic acid. The relative yields of [14C]CO2 and [14C]organics are wavelength- and surface-dependent. Conversion of CO to CO2 occurs primarily at wavelengths shorter than 2000 angstrom, apparently involves the photolysis of water, and is inhibited by increasing amounts of vycor substratum. Organic formation occurs over a broad spectral range below 3000 angstrom and increases with increasing amounts of substratum. It is suggested that organic synthesis results from adsorption of CO and H2O on surfaces, with excitation of one or both molecules occurring at wavelengths longer than those absorbed by the free gases. This process may occur on Mars and may have been important on the primitive earth

    Metamorphosis of plasma turbulence-shear flow dynamics through a transcritical bifurcation

    Full text link
    The structural properties of an economical model for a confined plasma turbulence governor are investigated through bifurcation and stability analyses. A close relationship is demonstrated between the underlying bifurcation framework of the model and typical behavior associated with low- to high-confinement transitions such as shear flow stabilization of turbulence and oscillatory collective action. In particular, the analysis evinces two types of discontinuous transition that are qualitatively distinct. One involves classical hysteresis, governed by viscous dissipation. The other is intrinsically oscillatory and non-hysteretic, and thus provides a model for the so-called dithering transitions that are frequently observed. This metamorphosis, or transformation, of the system dynamics is an important late side-effect of symmetry-breaking, which manifests as an unusual non-symmetric transcritical bifurcation induced by a significant shear flow drive.Comment: 17 pages, revtex text, 9 figures comprised of 16 postscript files. Submitted to Phys. Rev.

    In-roads to the spread of antibiotic resistance: regional patterns of microbial transmission in northern coastal Ecuador

    Get PDF
    The evolution of antibiotic resistance (AR) increases treatment cost and probability of failure, threatening human health worldwide. The relative importance of individual antibiotic use, environmental transmission and rates of introduction of resistant bacteria in explaining community AR patterns is poorly understood. Evaluating their relative importance requires studying a region where they vary. The construction of a new road in a previously roadless area of northern coastal Ecuador provides a valuable natural experiment to study how changes in the social and natural environment affect the epidemiology of resistant Escherichia coli. We conducted seven bi-annual 15 day surveys of AR between 2003 and 2008 in 21 villages. Resistance to both ampicillin and sulphamethoxazole was the most frequently observed profile, based on antibiogram tests of seven antibiotics from 2210 samples. The prevalence of enteric bacteria with this resistance pair in the less remote communities was 80 per cent higher than in more remote communities (OR = 1.8 [1.3, 2.3]). This pattern could not be explained with data on individual antibiotic use. We used a transmission model to help explain this observed discrepancy. The model analysis suggests that both transmission and the rate of introduction of resistant bacteria into communities may contribute to the observed regional scale AR patterns, and that village-level antibiotic use rate determines which of these two factors predominate. While usually conceived as a main effect on individual risk, antibiotic use rate is revealed in this analysis as an effect modifier with regard to community-level risk of resistance

    BCS to Bose Crossover in Anisotropic Superconductors

    Full text link
    In this work we use functional integral techniques to examine the nearest neighbour attractive Hubbard model on a quasi-2D lattice. It is a simple phenomenological model for the high-Tc cuprates that allows both extended (non-local) s- and d-wave singlet superconductivity as well as mixed symmetry states. The Hartree-Gor'kov mean field theory of the model has a finite temperature phase diagram which shows a transition from pure s-wave to pure d-wave superconductivity, via a mixed symmetry s+id state, as a function of doping. Including Gaussian fluctuations we examine the crossover from weak-coupling BCS superconductivity to the strong-coupling Bose-Einstein condensation of composite s- or d-wave bosons and comment on the origin and symmetry of the pseudogap.Comment: 20 pages inc. 13 figure

    Gender Differences in Russian Colour Naming

    Get PDF
    In the present study we explored Russian colour naming in a web-based psycholinguistic experiment (http://www.colournaming.com). Colour singletons representing the Munsell Color Solid (N=600 in total) were presented on a computer monitor and named using an unconstrained colour-naming method. Respondents were Russian speakers (N=713). For gender-split equal-size samples (NF=333, NM=333) we estimated and compared (i) location of centroids of 12 Russian basic colour terms (BCTs); (ii) the number of words in colour descriptors; (iii) occurrences of BCTs most frequent non-BCTs. We found a close correspondence between females’ and males’ BCT centroids. Among individual BCTs, the highest inter-gender agreement was for seryj ‘grey’ and goluboj ‘light blue’, while the lowest was for sinij ‘dark blue’ and krasnyj ‘red’. Females revealed a significantly richer repertory of distinct colour descriptors, with great variety of monolexemic non-BCTs and “fancy” colour names; in comparison, males offered relatively more BCTs or their compounds. Along with these measures, we gauged denotata of most frequent CTs, reflected by linguistic segmentation of colour space, by employing a synthetic observer trained by gender-specific responses. This psycholinguistic representation revealed females’ more refined linguistic segmentation, compared to males, with higher linguistic density predominantly along the redgreen axis of colour space

    High-Throughput Proteomics Detection of Novel Splice Isoforms in Human Platelets

    Get PDF
    Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS/MS datasets

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Rates Of Amyloid Imaging Positivity In Patients With Primary Progressive Aphasia

    Get PDF
    IMPORTANCE The ability to predict the pathology underlying different neurodegenerative syndromes is of critical importance owing to the advent of molecule-specific therapies. OBJECTIVE To determine the rates of positron emission tomography (PET) amyloid positivity in the main clinical variants of primary progressive aphasia (PPA). DESIGN, SETTING, AND PARTICIPANTS This prospective clinical-pathologic case series was conducted at a tertiary research clinic specialized in cognitive disorders. Patients were evaluated as part of a prospective, longitudinal research study between January 2002 and December 2015. Inclusion criteria included clinical diagnosis of PPA; availability of complete speech, language, and cognitive testing; magnetic resonance imaging performed within 6 months of the cognitive evaluation; and PET carbon 11-labeled Pittsburgh Compound-B or florbetapir F 18 brain scan results. Of 109 patients referred for evaluation of language symptoms who underwent amyloid brain imaging, 3 were excluded because of incomplete language evaluations, 5 for absence of significant aphasia, and 12 for presenting with significant initial symptoms outside of the language domain, leaving a cohort of 89 patients with PPA. MAIN OUTCOMES AND MEASURES Clinical, cognitive, neuroimaging, and pathology results. RESULTS Twenty-eight cases were classified as imaging-supported semantic variant PPA (11 women [39.3%]; mean [SD] age, 64 [7] years), 31 nonfluent/agrammatic variant PPA (22 women [71.0%]; mean [SD] age, 68 [7] years), 26 logopenic variant PPA (17 women [65.4%]; mean [SD] age, 63 [8] years), and 4 mixed PPA cases. Twenty-four of 28 patients with semantic variant PPA (86%) and 28 of 31 patients with nonfluent/agrammatic variant PPA (90%) had negative amyloid PET scan results, while 25 of 26 patients with logopenic variant PPA (96%) and 3 of 4 mixed PPA cases (75%) had positive scan results. The amyloid positive semantic variant PPA and nonfluent/agrammatic variant PPA cases with available autopsy data (2 of 4 and 2 of 3, respectively) all had a primary frontotemporal lobar degeneration and secondary Alzheimer disease pathologic diagnoses, whereas autopsy of 2 patients with amyloid PET-positive logopenic variant PPA confirmed Alzheimer disease. One mixed PPA patient with a negative amyloid PET scan had Pick disease at autopsy. CONCLUSIONS AND RELEVANCE Primary progressive aphasia variant diagnosis according to the current classification scheme is associated with Alzheimer disease biomarker status, with the logopenic variant being associated with carbon 11-labeled Pittsburgh Compound-B positivity in more than 95% of cases. Furthermore, in the presence of a clinical syndrome highly predictive of frontotemporal lobar degeneration pathology, biomarker positivity for Alzheimer disease may be associated more with mixed pathology rather than primary Alzheimer disease

    The UCSC Genome Browser database: extensions and updates 2011

    Get PDF
    The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced ‘track data hubs’, which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browser's image

    20 years of research on the Alcator C-Mod tokamak

    Get PDF
    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)United States. Dept. of Energy (Cooperative Agreement DE-FG03-94ER-54241)United States. Dept. of Energy (Cooperative Agreement DE-AC02-78ET- 51013)United States. Dept. of Energy (Cooperative Agreement DE-AC02-09CH11466)United States. Dept. of Energy (Cooperative Agreement DE-FG02-95ER54309)United States. Dept. of Energy (Cooperative Agreement DE-AC02-05CH11231)United States. Dept. of Energy (Cooperative Agreement DE-AC52-07NA27344)United States. Dept. of Energy (Cooperative Agreement DE-FG02- 97ER54392)United States. Dept. of Energy (Cooperative Agreement DE-SC00-02060
    corecore