770 research outputs found

    Burkholderia pseudomallei Capsular Polysaccharide Recognition by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis.

    Get PDF
    Burkholderia pseudomallei is the bacterium responsible for melioidosis, an infectious disease with high mortality rates. Since melioidosis is a significant public health concern in endemic regions and the organism is currently classified as a potential biothreat agent, the development of effective vaccines and rapid diagnostics is a priority. The capsular polysaccharide (CPS) expressed by B. pseudomallei is a highly conserved virulence factor and a protective antigen. Because of this, CPS is considered an attractive antigen for use in the development of both vaccines and diagnostics. In the present study, we describe the interactions of CPS with the murine monoclonal antibody (mAb) 4C4 using a multidisciplinary approach including organic synthesis, molecular biology techniques, surface plasmon resonance, and nuclear magnetic spectroscopy. Using these methods, we determined the mode of binding between mAb 4C4 and native CPS or ad hoc synthesized capsular polysaccharide fragments. Interestingly, we demonstrated that the O-acetyl moiety of CPS is essential for the interaction of the CPS epitope with mAb 4C4. Collectively, our results provide important insights into the structural features of B. pseudomallei CPS that enable antibody recognition that may help the rational design of CPS-based vaccine candidates. In addition, our findings confirm that the mAb 4C4 is suitable for use in an antibody-based detection assay for diagnosis of B. pseudomallei infections

    Rigidity of escaping dynamics for transcendental entire functions

    Full text link
    We prove an analog of Boettcher's theorem for transcendental entire functions in the Eremenko-Lyubich class B. More precisely, let f and g be entire functions with bounded sets of singular values and suppose that f and g belong to the same parameter space (i.e., are *quasiconformally equivalent* in the sense of Eremenko and Lyubich). Then f and g are conjugate when restricted to the set of points which remain in some sufficiently small neighborhood of infinity under iteration. Furthermore, this conjugacy extends to a quasiconformal self-map of the plane. We also prove that this conjugacy is essentially unique. In particular, we show that an Eremenko-Lyubich class function f has no invariant line fields on its escaping set. Finally, we show that any two hyperbolic Eremenko-Lyubich class functions f and g which belong to the same parameter space are conjugate on their sets of escaping points.Comment: 28 pages; 2 figures. Final version (October 2008). Various modificiations were made, including the introduction of Proposition 3.6, which was not formally stated previously, and the inclusion of a new figure. No major changes otherwis

    Inboard and outboard radial electric field wells in the H- and I-mode pedestal of Alcator C-Mod and poloidal variations of impurity temperature

    Get PDF
    We present inboard (HFS) and outboard (LFS) radial electric field (E[subscript r]) and impurity temperature (T[subscript z]) measurements in the I-mode and H-mode pedestal of Alcator C-Mod. These measurements reveal strong Er wells at the HFS and the LFS midplane in both regimes and clear pedestals in T[subscript z], which are of similar shape and height for the HFS and LFS. While the H-mode E[subscript r] well has a radially symmetric structure, the E[subscript r] well in I-mode is asymmetric, with a stronger ExB shear layer at the outer edge of the E[subscript r] well, near the separatrix. Comparison of HFS and LFS profiles indicates that impurity temperature and plasma potential are not simultaneously flux functions. Uncertainties in radial alignment after mapping HFS measurements along flux surfaces to the LFS do not, however, allow direct determination as to which quantity varies poloidally and to what extent. Radially aligning HFS and LFS measurements based on the T[subscript z] profiles would result in substantial inboard-outboard variations of plasma potential and electron density. Aligning HFS and LFS E[subscript r] wells instead also approximately aligns the impurity poloidal flow profiles, while resulting in a LFS impurity temperature exceeding the HFS values in the region of steepest gradients by up to 70%. Considerations based on a simplified form of total parallel momentum balance and estimates of parallel and perpendicular heat transport time scales seem to favor an approximate alignment of the E[subscript r] wells and a substantial poloidal asymmetry in impurity temperature.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)Swiss National Science Foundatio

    Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis.

    Get PDF
    Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the "gold standard" for the diagnosis of melioidosis; results can take 3-7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation

    The Sources of Inflammatory Mediators in the Lung after Silica Exposure

    Get PDF
    The expression of 10 genes implicated in regulation of the inflammatory processes in the lung was studied after exposure of alveolar macrophages (AMs) to silica in vitro or in vivo. Exposure of AMs to silica in vitro up-regulated the messenger RNA (mRNA) levels of three genes [interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2)] without a concomitant increase in the protein levels. AMs isolated after intratracheal instillation of silica up-regulated mRNA levels of four additional genes [granulocyte/macrophage-colony stimulating factor (GM-CSF), IL-1β, IL-10, and inducible nitric oxide synthase]. IL-6, MCP-1, and MIP-2 protein levels were elevated in bronchoalveolar lavage fluid. Fibroblasts under basal culture conditions express much higher levels of IL-6 and GM-CSF compared with AMs. Coculture of AMs and alveolar type II cells, or coculture of AMs and lung fibroblasts, in contact cultures or Transwell chambers, revealed no synergistic effect. Therefore, such interaction does not explain the effects seen in vivo. Identification of the intercellular communication in vivo is still unresolved. However, fibroblasts appear to be an important source of inflammatory mediators in the lung

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012
    corecore