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Abstract

Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei
from clinical samples is the ‘‘gold standard’’ for the diagnosis of melioidosis; results can take 3–7 days to produce.
Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic
areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis.
Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic
biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential
candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following
production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine
the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to
produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS
is comparable to the antigen-capture immunoassay (,0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was
98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing
determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei
strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the
AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and
Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a
large, multisite pre-clinical evaluation.
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Introduction

Burkholderia pseudomallei is an environmental Gram-negative

bacillus and the cause of melioidosis. The clinical manifestations

of melioidosis are broad and include disseminated disease with

organ abscesses, severe sepsis, and mild infection of the skin

and soft tissue [1]. Most patients have risk factors for infection,

which include diabetes, heavy alcohol use, and chronic pulmonary

or kidney disease [1–3]. The highest number of reported cases

occurs in endemic regions of Thailand and Australia. Rising

incidence rates have been recorded in northeast Thailand between

1997–2006, during which the average mortality rate was 42.6%

[3]. In 2006, melioidosis and tuberculosis mortality rates in

northeast Thailand were equivalent and second only to HIV/

AIDS for infectious disease deaths [3]. In northern Australia the

mortality rate over the last five years of the Darwin prospective

melioidosis study was calculated at 9% [2]. The authors attributed

the low mortality rate to early diagnosis and treatment, and access

to and improvements in intensive care management [2].

Isolation of B. pseudomallei from clinical samples remains the

‘‘gold standard’’ against which other melioidosis diagnostics are

compared [4]. Culture is routinely performed on multiple
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sample types (blood, urine, pus, sputum, etc.) and isolation of

B. pseudomallei from any one of these cultures is diagnostic for

melioidosis [5,6]. However, recent modeling data has confirmed

that culturing is an imperfect gold standard [7]. Furthermore,

laboratory processing of positive samples takes 3–7 days [8]. This

problem is compounded by the fact that many diagnostic

laboratories may misidentify B. pseudomallei through lack of

experience or validated diagnostic reagents [9]. Any delay in

diagnostic confirmation is potentially important as B. pseudomallei

requires therapy with ceftazidime or a carbapenem drug, which

are not agents of choice for empirical therapeutic regimens. Taken

together, these factors point to a clear need for a simple and rapid

diagnostic test for accurate identification of B. pseudomallei directly

on clinical samples or cultures.

Prior to diagnostic test development we identified a number of

potential B. pseudomallei diagnostic biomarkers by In vivo Microbial

Antigen Discovery (InMAD) [10,11] that are shed or secreted and

may be targeted to diagnose acute disease. Capsular polysaccha-

ride (CPS) proved to be the most encouraging target; this molecule

is a polymer of 1,3-linked 2-O-acetyl-6-deoxy-b-D-manno-heptopyr-

anose residues [12]. We confirmed CPS was present in melioidosis

patient serum and urine samples by antigen-capture ELISA

utilizing a CPS-specific monoclonal antibody (mAb 3C5) [10].

The current report describes the characterization of mAb 3C5,

quantification of CPS within patient samples, and optimization of

the Active Melioidosis Detect lateral flow immunoassay (AMD

LFI) for the rapid diagnosis of melioidosis.

Materials and Methods

Bacterial cultures
Bacterial isolates listed in Table 1 were cultured on trypticase

soy agar containing 5% sheep blood. Escherichia coli and

B. pseudomallei (strain Bp82) were cultured on Luria Bertani agar

and brain heart infusion agar, respectively. Plates were incubated

at 37uC for 18–24 h. All work with viable B. pseudomallei and

Burkholderia mallei strains was conducted under BSL-3 containment.

All other strains were grown under BSL-2 containment.

Ethics section
Clinical samples from patients with culture-positive melioidosis

were obtained from sample archives (no identifiable private

information supplied) at Mahidol-Oxford Tropical Medicine

Research Unit, Mahidol University, Bangkok, Thailand and

Menzies School of Health Research and Northern Territory

Clinical School, Royal Darwin Hospital, Darwin, Northern

Territory, Australia. Archived and de-identified melioidosis

negative serum and urine samples were obtained from the

University of Nevada School of Medicine, Reno, NV, USA.

Quantitation of B. pseudomallei in urine samples
B. pseudomallei was quantified in urine as previously described

[6]. Briefly, 1 ml of urine was plated on Ashdown agar plates and

incubated overnight at 37uC [13]. Colonies were counted and

expressed as colony forming units (CFU)/ml (Table 1). The

remaining urine was centrifuged at 3000 rpm for 5 min. The

pellet was then plated on an Ashdown agar plate and incubated

overnight. The lower limit of detection was 1 CFU/ml (1 colony

from 1 ml) and the upper limit of detection was $106 CFU/ml

($1000 colonies/1 ml). A positive B. pseudomallei liquid culture

from urine samples that did not show growth on Ashdown agar

plates was estimated to contain ,103 CFU/ml.

Monoclonal antibody affinity determination
Antibody-antigen binding experiments were performed using

surface plasmon resonance (SPR) with a BIAcore X100 instrument

(GE Healthcare, Piscataway, NJ). In each experiment, the running

buffer and sample diluent was 1X HBS-EP+ (GE Healthcare):

10 mM HEPES, 150 mM NaCl, 3 mM EDTA, and 0.05%

surfactant P20, pH 7.4. Biotinylated CPS was immobilized onto

the surface of a streptavidin (SA) sensor chip (GE Healthcare) until

1000 response units (RU) were reached. Purification of CPS has

been previously described [10]. A BIAcore flow cell was left

unmodified for reference subtraction. To evaluate binding affinity,

a two-fold serial dilution of mAb 3C5 (333–5.2 nM) was prepared

in HBS-EP+. Each concentration of mAb was injected over the

sensor surface at flow rate of 30 ml/min for 60 s, after which mAb

was allowed to passively dissociate for 120 s. The sensor surface

was regenerated between runs with a 60 s pulse of 4 M MgCl2 to

ensure the removal of residually bound mAb. The dissociation

constant (KD) was determined using the steady-state model in

BIAevaluation software (GE Healthcare).

Quantitative antigen-capture ELISA
Detection of CPS by antigen-capture ELISA has been described

previously [10]. Briefly, mAb 3C5 (0.25–4 mg/ml) diluted in PBS

was incubated overnight at room temperature in 96-well

microtiter plates (Immulon 1B, Thermo Scientific). The wells

were then washed with PBS-Tween (PBS containing 0.5% Tween

20), and blocked for 90 min in the same solution. Purified CPS in

PBS was serially diluted across the 96-well plate from 100–

0.006 ng/ml, which was used to generate a standard curve to

quantify CPS present in melioidosis patient samples. Wells were

washed with PBS-Tween followed by incubation with HRP-

labeled mAb 3C5 (2 mg/ml) for 90 min. The wells were then

washed and incubated with tetramethylbenzidine substrate

(Kirkegaard & Perry Laboratories) for 30 min. Stop solution

(1 M H3PO4) was then added to the wells and the absorbance was

read at 450 nm. Patient samples were analyzed by a similar

protocol with some minor modifications. Microtiter wells were

coated with 2 mg/ml mAb 3C5. Melioidosis patient serum (1:2

starting dilution) or urine (no starting dilution) was then serially

diluted across the microtiter plate. The CPS concentration in

urine samples was calculated by applying a linear regression to the

plot of log optical density at 450 nm versus log urine dilution with

background correction as described by Peterman [14]. An end

point optical density of 2-fold over background was used for the

calculation of CPS concentrations, using purified CPS as a

standard.

Construction of the AMD LFI
Lateral flow immunoassays were developed using mAb 3C5

targeting the CPS of B. pseudomallei. For the test line, 3C5 was

Author Summary

Burkholderia pseudomallei is an environmental bacterium
and the cause of melioidosis. Culture of patient samples is
the ‘‘gold standard’’ diagnostic test, but may take up to 7
days to complete. Melioidosis has a 10–40% case fatality
rate depending on the geographic location. Delays in
diagnosis could lead to administration of ineffective
antimicrobial therapy, since B. pseudomallei is resistant to
empiric antibiotic regimens. Therefore, we have developed
a lateral flow immunoassay that can be used in the clinical
setting to diagnose melioidosis in 15 minutes. The test
promises to provide improved management of patients
with melioidosis.

Melioidosis Lateral Flow Immunoassay
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Table 1. Active Melioidosis Detect analytical reactivity and specificity.

Bacterial isolate Strain name/DASH # Lateral Flow Result

Burkholderia pseudomallei 7641; PHLS24; CDC2721620 Positive (+)

Burkholderia pseudomallei Bp25; CDC2721628; 770429 Positive (+)

Burkholderia pseudomallei CDC2721639; PHLS 66 Positive (+)

Burkholderia pseudomallei K96243; NR 9320; CDC0022138 Positive (+)

Burkholderia pseudomallei Bp92; CDC2721623 Positive (+)

Burkholderia pseudomallei Thai 2 NE Human 88; PHLS 45 Positive (+)

Burkholderia pseudomallei Bp104; CDC2721624 Positive (+)

Burkholderia pseudomallei CDC2721635; PHLS 36 Positive (+)

Burkholderia pseudomallei Bp73; Ln31348 Positive (+)

Burkholderia pseudomallei PHLS 208 Positive (+)

Burkholderia pseudomallei CDC2721102; F5013 Positive (+)

Burkholderia pseudomallei BpG9709; CDC0032026 Positive (+)

Burkholderia pseudomallei Sing Env 91; PHLS 19; CDC2721625 Positive (+)

Burkholderia pseudomallei ATCC 23343; CDC2721676; NCTC 12939 Positive (+)

Burkholderia pseudomallei Bp2889; SID2889 Positive (+)

Burkholderia pseudomallei France Env 76; PHLS 33; CDC2721630; 7605 Positive (+)

Burkholderia pseudomallei Bp68; CDC2721641 Positive (+)

Burkholderia pseudomallei Indo 1 Monkey 90; PHLS 17; CDC2721619 Positive (+)

Burkholderia pseudomallei Sing3 Human 88; PHLS 38; S6 Positive (+)

Burkholderia pseudomallei 1106a; U1106a; CDC0022030 Positive (+)

Burkholderia pseudomallei Bp53; CDC2721633; 307a Positive (+)

Burkholderia pseudomallei Bp24; CDC2721620 Positive (+)

Burkholderia pseudomallei BpG9313; CDC0032029 Positive (+)

Burkholderia pseudomallei CDC2721162; B7210; B6195; 904-1111 Positive (+)

Burkholderia pseudomallei CDC2721114; G6715 Positive (+)

Burkholderia pseudomallei Thai NE Env 90; PHLS 216; CDC2721626 Positive (+)

Burkholderia pseudomallei Bp H1406B; CDC0032028 Positive (+)

Burkholderia pseudomallei F1394; 2002721096; 81A442 Positive (+)

Burkholderia pseudomallei CDC2721123; H0929; 98-33; CDC0032024 Positive (+)

Burkholderia pseudomallei Thai NE Human 99; PHLS 392 Positive (+)

Burkholderia pseudomallei CDC1029240; H2001; 2001T-0229 Positive (+)

Burkholderia pseudomallei CDC2721617; PHLS 5; NCTC 8016 Positive (+)

Burkholderia pseudomallei Bp 14; CDC2721618 Positive (+)

Burkholderia pseudomallei Bp H1442; CDC0032025 Positive (+)

Burkholderia pseudomallei MSHR640; CDC8724880 Positive (+)

Burkholderia pseudomallei Australian NT Human 1 97; 465a; CDC8724601 Positive (+)

Burkholderia pseudomallei MSHR99; CDC8724881 Positive (+)

Burkholderia pseudomallei MSHR362; CDC1756207 Positive (+)

Burkholderia pseudomallei MSHR503; CDC8724890 Positive (+)

Burkholderia pseudomallei #711; CDC2721675 Positive (+)

Burkholderia pseudomallei PM19; CDC2734678; 620 Positive (+)

Burkholderia pseudomallei MSHR296; CDC8724908 Positive (+)

Burkholderia pseudomallei MSHR1200; CDC8724883 Positive (+)

Burkholderia pseudomallei CDC2734694; PM40 Positive (+)

Burkholderia pseudomallei PM26; CDC2734683 Positive (+)

Burkholderia pseudomallei Malaysia5 Human; PHLS 75 Positive (+)

Burkholderia pseudomallei MSHR1300; CDC8724901 Positive (+)

Burkholderia pseudomallei PM115; CDC2734709 Positive (+)

Burkholderia pseudomallei STW 424-1; CDC2721825 Positive (+)

Burkholderia pseudomallei Bp40 Positive (+)

Melioidosis Lateral Flow Immunoassay
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Table 1. Cont.

Bacterial isolate Strain name/DASH # Lateral Flow Result

Burkholderia pseudomallei MSHR365; CDC8724894 Positive (+)

Burkholderia pseudomallei PM138; CDC2734661; SA923 Positive (+)

Burkholderia pseudomallei Malaysia4 Human; PHLS 79 Positive (+)

Burkholderia pseudomallei BpH1689; CDC0032024 Positive (+)

Burkholderia pseudomallei CDC2721184 Positive (+)

Burkholderia pseudomallei CDC2721634 Positive (+)

Burkholderia pseudomallei CDC1756205 Positive (+)

Burkholderia pseudomallei CDC8724905 Positive (+)

Burkholderia pseudomallei CDC0022203 Positive (+)

Burkholderia pseudomallei CDC2721637 Positive (+)

Burkholderia pseudomallei CDC8724896; 1026b Positive (+)

Burkholderia pseudomallei CDC8724889 Positive (+)

Burkholderia pseudomallei CDC8724898 Positive (+)

Burkholderia pseudomallei MSHR1655; 2002721686 (wcbR mutation) Negative (2)

Burkholderia pseudomallei CDC8724899 Positive (+)

Burkholderia pseudomallei CDC8724882 Positive (+)

Burkholderia pseudomallei CDC8724900 Positive (+)

Burkholderia pseudomallei CDC8724892 Positive (+)

Burkholderia pseudomallei CDC8724893 Positive (+)

Burkholderia pseudomallei CDC2721761 Positive (+)

Burkholderia pseudomallei CDC8724885 Positive (+)

Burkholderia pseudomallei CDC0022358 Positive (+)

Burkholderia pseudomallei CDC8724877 Positive (+)

Burkholderia pseudomallei CDC1756206 Positive (+)

Burkholderia pseudomallei CDC8724895 Positive (+)

Burkholderia pseudomallei CDC8724903 Positive (+)

Burkholderia pseudomallei CDC8724878 Positive (+)

Burkholderia mallei KC 238; Kweiyang #4; CDC2721277 Positive (+)

Burkholderia mallei Kweiyang #1; CDC2734821 Positive (+)

Burkholderia mallei KC1090; A188 Pasteur Institute; CDC2721278 Positive (+)

Burkholderia mallei India 65-603; CDC0031066 Positive (+)

Burkholderia mallei NCTC 10247; CDC2734315; Turkey 12 Positive (+)

Burkholderia mallei Turkey 1; CDC0031065 Positive (+)

Burkholderia mallei Turkey 5; CDC2734302 Positive (+)

Burkholderia mallei NCTC 10260; CDC2734314; CDC2734301; Turkey 11; GB6; CCUG 19395 Positive (+)

Burkholderia mallei Rob-DASH (2000031281); CDC0031304 Positive (+)

Burkholderia mallei KC 234; 3873; China 7; CDC2721273 Positive (+)

Burkholderia mallei KC 235; 3873-18; CDC2721274 Positive (+)

Burkholderia mallei KC0248; CDC4017733 Positive (+)

Burkholderia mallei KC 1091; A193 Pasteur Institute; CDC2721279 Positive (+)

Burkholderia mallei KC 1092; CDC2721280; 52-236 Pasteur Institute Positive (+)

Burkholderia mallei BURK011; CDC8724847; C2006251001 Positive (+)

Burkholderia mallei GB9; CDC2734305; Strain 102; NCTC3708 Positive (+)

Burkholderia mallei NCTC 3709 (Strain 106); CDC2724303; GB10 Positive (+)

Burkholderia mallei Turkey 2; BURK063; CDC8724837 Positive (+)

Burkholderia mallei Turkey 3; BURK064; CDC8724838 Positive (+)

Burkholderia mallei Turkey 4; BURK065; CDC8724839 Positive (+)

Burkholderia mallei Turkey 7; BURK068; CDC8724841 Positive (+)

Burkholderia mallei CDC2734300; NCTC10247 Positive (+)

Burkholderia mallei CDC2734301, NCTC10260 Positive (+)

Melioidosis Lateral Flow Immunoassay
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Table 1. Cont.

Bacterial isolate Strain name/DASH # Lateral Flow Result

Burkholderia mallei CDC2734317; NCTC3709 Positive (+)

Burkholderia mallei CDC2721275 Negative (2)

Burkholderia mallei CDC2734299 Positive (+)

Burkholderia mallei CDC2734311 Negative (2)

Burkholderia mallei CDC0031063 Positive (+)

Burkholderia mallei CDC0031064 Positive (+)

Burkholderia mallei CDC2721276 Positive (+)

Burkholderia mallei CDC2721648 Positive (+)

Burkholderia mallei CDC2734312 Positive (+)

Burkholderia mallei CDC2721280 Negative (2)

Burkholderia thailandensis CDC3015869 (contains capsule operon) Positive (+)

Burkholderia thailandensis CDC2721621 Negative (2)

Burkholderia thailandensis CDC2721627 Negative (2)

Burkholderia thailandensis CDC2721121 Negative (2)

Burkholderia thailandensis CDC2721643 Negative (2)

Burkholderia thailandensis CDC2721701 Negative (2)

Burkholderia thailandensis CDC2721723 Negative (2)

Burkholderia thailandensis CDC2721744 Negative (2)

Burkholderia humptydooensis CDC2721687 Negative (2)

Burkholderia oklahomensis CDC4002358 Negative (2)

Burkholderia oklahomensis CDC4021865 Negative (2)

Burkholderia oklahomensis CDC4021866 Negative (2)

Burkholderia vietnamiensis CDC2734483 Negative (2)

Burkholderia pyrrocinia CDC2724646 Negative (2)

Burkholderia caledonica CDC8724197 Negative (2)

Burkholderia caribensis CDC8724200 Negative (2)

Burkholderia ambifaria CDC8724201 Negative (2)

Burkholderia anthina CDC8724199 Negative (2)

Burkholderia cocovenenans CDC2734715 Negative (2)

Burkholderia ferrariae CDC8724209 Negative (2)

Burkholderia hydrophilia CDC2721759 Negative (2)

Burkholderia fungorum CDC8724198 Negative (2)

Burkholderia glathei CDC2734719 Negative (2)

Burkholderia graminis CDC2734716 Negative (2)

Burkholderia hospita CDC8724207 Negative (2)

Burkholderia kururiensis CDC2734717 Negative (2)

Burkholderia nodosa CDC8724205 Negative (2)

Burkholderia phenazinium CDC2734718 Negative (2)

Burkholderia phenoliruptrix CDC8724203 Negative (2)

Burkholderia phymatum CDC8724208 Negative (2)

Burkholderia phytofirmans CDC8724204 Negative (2)

Burkholderia sacchari CDC8724202 Negative (2)

Burkholderia silvatlantica CDC8724206 Negative (2)

Burkholderia rhizoxinica CDC2734772 Negative (2)

Burkholderia endofungorum CDC2734773 Negative (2)

Burkholderia gladioli CDC3027208 Negative (2)

Escherichia coli ATCC 25922 Negative (2)

Pseudomonas aeruginosa* ATCC 27853 Negative (2)

Streptococcus pneumoniae* ATCC 10015 Negative (2)

Klebsiella pneumoniae* ATCC 13883 Negative (2)

Melioidosis Lateral Flow Immunoassay
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sprayed onto a nitrocellulose membrane strip. For the control line

goat anti-chicken IgY was sprayed on the same membrane. The

conjugate pad contained dried 40 nm gold particles conjugated to

mAb 3C5 as well as a small amount of gold conjugated chicken

IgY (to react with the control line). The conjugate pad was treated

with a borate-based buffer containing a small concentration of

detergent and dried for later gold conjugate application. The

sample application pad was also treated similarly and dried. The

LFI was assembled by combining the sprayed membrane,

conjugate pad, and sample pad on top of an adhesive plastic

backing. Each layer overlaps by no more than 2–3 mm. Samples

were applied to the sample application pad followed by addition of

a chase buffer to facilitate capillary action. Certain samples types

(e.g. sputum, pus or cultures) were pretreated with a lysis buffer

containing low levels of detergents prior to application to the

sample pad. LFIs were read after 15 minutes and determined to be

positive or negative based on the presence or absence of a pink-red

line at the test line in the presence of a positive control line.

Western blot analysis
A previously described Western blot procedure with semi-dry

blotting was used for this study [15]. Briefly, 86106 bacterial cells

were suspended in Laemmli Sample Buffer (Sigma) and boiled for

10 minutes. The samples were run on a 10% SDS gel followed by

semi-dry transfer onto a PVDF membrane. mAb 3C5 was used at

a final concentration of 0.2 mg/ml. Goat anti-mouse IgG-HRP

(Southern Biotech) was used at a 1:10,000 dilution and signal was

detected with a chemiluminescent substrate (Pierce).

Sample preparation and AMD LFI testing
Bacterial colonies were tested for reactivity on the LFI. An

entire single colony was picked with a sterile loop and suspended

in two drops of lysis buffer. The entire bacterial suspension was

pipetted onto the LFI sample pad followed by the addition of three

drops of chase buffer. Three colonies from each bacterial isolate

listed in Table 1 were tested in this manner. Culture-proven

melioidosis clinical samples (archived) were used to optimize

sample preparation. Serum (50 ml) was combined with 150 ml of

chase buffer; this solution was then applied to the LFI sample pad.

Pus (20 ml) was combined with 100 ml of lysis buffer followed by

vortexing. The lysate (20 ml) was then combined with 150 ml of

chase buffer and applied to the sample pad. Urine was prepared

by first centrifuging a maximum of 10 ml at 32006 g for

10 minutes. The supernatant was removed and the pelleted

material was suspended in 50 ml of lysis buffer. The lysate (20 ml)

was combined with 150 ml of chase buffer and applied to the

sample pad. Sputum (50 ml) was combined with 100 ml of lysis

buffer followed by vortexing. If the sputum sample was viscous

then 20 ml was combined with 150 ml of lysis buffer. The lysate

(20 ml) was combined with 150 ml of chase buffer and applied to

the sample pad. Pleural fluid (30 ml) was combined with 100 ml of

lysis buffer. The lysate (30 ml) was combined with 150 ml of chase

buffer and applied to the sample pad. Control serum (50 ml) spiked

with purified CPS (five-fold serial dilution) was combined with

150 ml of chase buffer and applied to the AMD LFI. Control urine

(50 ml) spiked with purified CPS (five-fold serial dilution) was

combined with 150 ml of chase buffer and applied to the AMD

LFI. Each test was allowed to flow for 15 min and a digital image

was taken of each result.

Results

Our previous report described the ability of mAb 3C5 to detect

B. pseudomallei CPS in urine from patients with melioidosis [10].

Although encouraging, further experiments were required before

constructing a point-of-care diagnostic assay to determine (i) the

affinity of mAb 3C5 for CPS, (ii) the limit of detection of mAb 3C5

for CPS by ELISA, and (iii) the concentration range of CPS that

accumulates in melioidosis patient samples.

SPR was used to determine the functional affinity of mAb 3C5

for B. pseudomallei CPS. Functional affinity is often referred to when

describing the collective effects of mAb bivalency and antigen

multivalency on binding (since CPS is composed of repeating

epitopes). The functional affinity was evaluated on a BIAcore

X100 sensor surface coated with immobilized CPS. The binding

activity of mAb 3C5 was examined over a 60 s injection pulse.

Total (resonance units) RU values were recorded following

binding of a series of mAb concentrations (Fig. 1, left panel).

These RU values were analyzed using a steady-state binding

model (Fig. 1, right panel). This led to the calculation of a 50 nM

dissociation constant (KD) of mAb 3C5 for CPS. This is a relatively

high affinity for a mAb specific to a polysaccharide antigen. This

led us to expect that mAb 3C5 would perform well in an antibody-

based detection assay.

An antigen-capture ELISA for CPS [10] was constructed to

determine the limit of detection (LOD) that could be achieved with

mAb 3C5 (Fig. 2). Due to the polyvalent nature of CPS, mAb 3C5

was used for both capture and detection in this assay. A two-fold

serial dilution of mAb 3C5 was incubated in the solid phase of the

96-well microtiter plate vertically across all eight rows. Following a

wash and blocking step, a two-fold serial dilution of purified CPS

was incubated in the wells (horizontally). Captured CPS was

detected with mAb 3C5 labeled with HRP. An optimal LOD of

0.2 ng/ml (2-fold over background) was achieved with a mAb 3C5

coating concentration of 2 mg/ml.

The antigen-capture ELISA was then used to quantify the

amount of CPS within serum and urine samples collected from

patients with culture-confirmed melioidosis in Thailand. Quan-

titative cultures were performed on urine samples prior to testing

and are reported as CFU/ml (Table 2). Blood cultures were also

tested although the CFU/ml was not determined. Each serum

(isolated from blood) and urine sample was passed through a

0.22 mm filter in order to remove intact bacterial cells prior to

shipment. In our previous report [10] we determined the highest

fold dilution of these samples that yielded an ELISA OD450 value

Table 1. Cont.

Bacterial isolate Strain name/DASH # Lateral Flow Result

Staphylococcus aureus* ATCC 25923 Negative (2)

Enterobacter cloacae* ATCC 23355 Negative (2)

Providencia stuartii* ATCC 33672 Negative (2)

*Indicates strains that were tested for reactivity against mAb 3C5 via western blot.
doi:10.1371/journal.pntd.0002727.t001
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$0.5. For the current study we were able to estimate the

concentration of CPS within these samples by comparing the OD

values to a standard curve produced with purified CPS (Table 2).

CPS was detected in 6/10 filtered urine samples at concentra-

tions ranging from 0.78–448 ng/ml. As expected, the concen-

tration of CPS was higher in samples that contained more CFUs/

ml. CPS was detected in all urine samples containing greater than

1.26104 CFU/ml. CPS was detected in 5/10 filtered serum

samples at concentrations ranging from 0.85 to 6.7 ng/ml.

Following successful detection of CPS by ELISA, a prototype

AMD LFI was constructed. A schematic of the components of the

LFI is depicted in Fig. 3A. Initial LFI testing was performed on B.

pseudomallei strain Bp82, a select agent excluded strain [16], and a

strain of E. coli (negative control). Bp82 was not included in Table 1

since the strain was derived from B. pseudomallei strain 1026b,

which is listed in Table 1. For each test, one single colony was

collected with a sterile loop and resuspended in two drops of lysis

buffer. The lysate was pipetted onto the LFI sample pad followed

by addition of three drops of chase buffer. The fluid migrates by

capillary action into the conjugate pad where gold-labeled mAb

3C5 binds to CPS present in the lysate. The gold-labeled mAb

3C5/CPS complex then migrates into the nitrocellulose mem-

brane and is captured at the test line, which is unlabeled mAb 3C5

bound to the membrane. The absorbent or wicking pad allows for

efficient capillary flow of the sample across the test line. The LFI

used to analyze Bp82 showed test line and control line reactivity

(Fig. 3B, top LFI) while the E. coli LFI was reactive only on the

control line (Fig. 3B, bottom LFI). The tests are run for 15 minutes

and results are recorded and imaged. Presence of the LFI control

line ensures the test has run properly.

The LFI was tested for reactivity to B. pseudomallei and B. mallei

in addition to other near neighbor species (Table 2). Strain panels

tested included isolates selected by the Stakeholder Panel on Agent

Detection Assay (SPADA) Burkholderia Working Group. The

SPADA Burkholderia panel was compiled by a number of key

stakeholders from federal agencies and biothreat researchers [17].

B. mallei has recently been shown to produce the identical manno-

heptose capsule as B. pseudomallei [18]; we have previously shown

mAb 3C5 reactivity to B. mallei CPS by Western blot [10]. The

LFI testing was performed at the Centers for Disease Control and

Prevention to evaluate analytical reactivity and specificity on

inclusivity and exclusivity strain panels. Three colonies from each

isolate listed in Table 1 were tested separately on the LFI. Of the

B. pseudomallei isolates tested, 76/77 (98.7%) were positive; 30/33

(90.9%) of the B. mallei isolates were also positive. In addition, 35/

36 (97.2%) of near neighbor species were negative by LFI. Eight

Burkholderia thailandensis isolates were tested, and seven were

negative. Other near neighbor species where also tested, including

Burkholderia humptydooensis sp. nov., Burkholderia oklahomensis and

Burkholderia cepacia complex (Bcc) species, all of which were

negative. In addition, other medically relevant species of bacteria

were negative for reactivity by Western blot (see footnote to

Table 1) to mAb 3C5 (data not shown).

The LOD of the AMD LFI was determined to verify that the

analytical sensitivity of the assay was sufficiently low to be used to

detect CPS in patient samples. Purified CPS was tested on the LFI

to determine the LOD under optimal conditions (Fig. 4). Dilutions

of CPS were prepared in chase buffer and applied to the LFI

sample pad. The LOD was estimated at or slightly below 0.2 ng/

ml. In addition, purified CPS was spiked into control serum

(Fig. 4B) and urine (Fig. 4C). Under these conditions the LOD was

increased slightly when compared to dilution in chase buffer alone,

however a clear reaction was apparent at 0.2 ng/ml.

The ability of the AMD LFI to accept a variety of patient

samples was assessed with a limited number of culture-positive

melioidosis samples in Australia. These samples were also used

to optimize sample preparation for the AMD LFI. The LFI was

designed to accept multiple sample matrices, which is critically

important for the diagnosis of melioidosis. As shown in Fig. 5A

Figure 1. Calculation of mAb 3C5 affinity for CPS. A BIAcore X100 instrument was used to determine the affinity of mAb 3C5 for CPS.
Biotinylated CPS was immobilized on the surface of a streptavidin sensor chip. Samples (two-fold serial dilution of mAb 3C5 [333–5.2 nM]) were
injected over the sensor surface for 60 s, after which the mAb was allowed to passively dissociate for 120 s (left panel). The dissociation constant (KD)
was determined using the steady-state model in BIAevaluation software (right panel).
doi:10.1371/journal.pntd.0002727.g001

Figure 2. Detection of purified CPS by antigen-capture ELISA.
mAb 3C5 was used in the capture phase of the ELISA at the
concentrations listed. Following a wash and blocking step, purified
CPS was serially diluted across the microtiter plate at the concentrations
listed. The wells were then washed and HRP-labeled mAb 3C5 was used
in the indicator phase to detect captured CPS. The ELISA was performed
in triplicate and mean values are plotted.
doi:10.1371/journal.pntd.0002727.g002
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the samples tested included serum, urine, sputum, pus and

pleural fluid collected from culture-confirmed melioidosis

patients (samples were not collected from the same patient) in

Thailand and Australia. Preparation of each sample prior to

application to the sample pad is described in the Methods

section. The melioidosis patient urine samples that were tested

by antigen-capture ELISA (Table 2) were also tested by LFI

(Fig. 5B). The urine samples that were positive by ELISA were

also positive by LFI. Qualitatively, the test line intensity of the

positive urine samples was congruent with their corresponding

ELISA values.

Discussion

A number of assays have been developed to diagnose

melioidosis prior to culture results becoming available. PCR has

been developed but is not in routine practice because it is limited

by low sensitivity, most likely stemming from the low concentra-

tion of B. pseudomallei in blood and the co-purification of PCR

inhibitors with target DNA [19–21]. However, a recently

developed Type III secretion system (TTS-1) real-time PCR assay

has been shown to be superior to previously developed PCR assays

for detection of B. pseudomallei DNA in clinical specimens [21].

When compared to culture the TTS-1 assay had a sensitivity and

specificity of 80% and 100%, respectively. The indirect hemag-

glutination assay (IHA) is a rapid and inexpensive method used to

detect antibodies produced during infection that are specific to

B. pseudomallei. However, a large percentage of healthy individuals

in endemic areas are seropositive [22,23]. This point is under-

scored by the fact that nearly 70% of children in northeast

Thailand are seropositive for B. pseudomallei antigens [24,25].

Consequently, the IHA (or any serological test for melioidosis) has

limited clinical utility in the endemic setting [1,26].

Antigen detection by immunofluorescence assay (IFA) or latex

agglutination is commonly used in endemic areas. IFA is used in

northeast Thailand for rapid diagnosis directly from patient

samples containing high levels of B. pseudomallei (sputum, pus,

urine and respiratory secretions) [27,28] and from blood cultures

[29]. The main drawback of IFA is the requirement for a

fluorescent microscope and the requisite expertise, which is not

feasible in most endemic settings. In addition, although

specificity of the IFA is high, the sensitivity has recently been

determined to range from 45–48% when used directly on

clinical samples [27]. Latex agglutination is an inexpensive

technique that is effective at identifying B. pseudomallei from

Table 2. Quantification of CPS in melioidosis patient serum
and urine (filtered) by antigen-capture ELISA.

Urinea Serum

Sample CFU/mLa
[CPS]
(ng/ml) Sample

Culture
resultb

[CPS]
(ng/ml)

UID1 2.36104 2.7 MSID1 + 5.4

UID2 .16105 448 MSID2 + ,LOD

UID3 7.56104 20 MSID3 + 6.7

UID4 1.26104 0.78 MSID4 + 3.3

UID5 .16105 66 MSID5 + ,LOD

UID6 3.56103 ,LODc MSID6 + 0.85

UID7 .16105 187 MSID7 + ,LOD

UID9 ,16103 ,LOD MSID8 + ,LOD

UID10 ,16103 ,LOD MSID9 + 1.6

UID12 ,16103 ,LOD MSID10 + ,LOD

aSerum and urine were collected from different patients.
bBlood cultures (serum) are reported only as positive or negative.
cCPS concentrations of these samples were below the LOD of the ELISA.
doi:10.1371/journal.pntd.0002727.t002

Figure 3. Prototype Active Melioidosis Detect (AMD) LFI. (A)
Schematic of LFI components. (B) B. pseudomallei strain Bp82 colony
grown on an agar plate was picked and suspended in 2 drops of lysis
buffer. The lysate was added to the sample pad followed by three drops
of LFI chase buffer (top LFI). The LFI was imaged following a 15 min run
time. The same test condition were used with a colony of E. coli (bottom
LFI).
doi:10.1371/journal.pntd.0002727.g003

Figure 4. Determination of the LOD of the AMD LFI. (A) Purified
CPS was diluted in chase buffer at the indicated concentration and
applied to the LFI sample pad. Results were photographed after 15 min.
Purified CPS was also diluted in human control sera (B) and human
control urine (C).
doi:10.1371/journal.pntd.0002727.g004
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cultures of patient samples grown on agar plates or within liquid

broth [30–33]. The agglutination assay is able to detect B.

pseudomallei at concentrations of 1–26106 CFU/ml; this limits its

utility to cultured patient samples or colonies isolated on solid

agar [32,33].

Our LFI is similar in design to those currently used for the

diagnosis of Streptococcus pneumoniae and Legionella pneumophila [34].

The L. pneumophila assay is a first-line test that relies on detection

of antigen produced by the bacterium within patient urine [35].

We anticipate the AMD LFI can also be used as a first-line test

and offer an improvement over the current rapid techniques for

the diagnosis of melioidosis. In addition we believe lateral flow

devices are well suited for resource poor settings in that they are

inexpensive, rapid, sensitive, and stable at room temperature. In

addition, LFIs do not require expensive equipment and they can

accept multiple sample matrices, two characteristics that are

essential for the diagnosis of melioidosis in resource poor

settings.

IgG3 mAb 3C5 possesses many important characteristics that

are necessary for the development of an antigen detection assay.

It has a relatively high affinity for its target antigen and shows

acceptable analytical reactivity and specificity. The high affinity

translates into a lower limit of detection for CPS by ELISA and

LFI. Interestingly, the LFI had a comparable analytical

sensitivity to the ELISA (,0.2 ng/ml) when CPS was diluted

in chase buffer. The analytical sensitivity was slightly lower when

CPS was spiked into control serum and urine. When tested by

LFI, 98.7% of B. pseudomallei isolates were positive while 97.2% of

near neighbor species were negative. Both the false-negative and

false-positive LFI results can be explained through sequencing

analysis. The one isolate that produced a false negative

(MSHR1655) originated from a patient that developed a

persistent asymptomatic B. pseudomallei infection in Australia. A

frameshift mutation was identified within the wcbR gene of this

isolate [36]. A B. pseudomallei strain (K96243) with a wcbR

mutation was recently shown to have greatly reduced CPS

expression [37]. The one B. thailandensis isolate that produced the

false positive had been previously shown to encode the CPS

biosynthetic operon [38,39].

An essential aspect of the current study was the quantification

of CPS within patient samples. This was accomplished by

comparing ELISA values generated from patient samples with a

standard curve generated with known concentrations of purified

CPS. Over half of the filtered serum and urine samples from

melioidosis patients had levels of CPS within the detection range

of the AMD LFI. The LFI detected CPS in 6/10 culture-positive

urine samples from melioidosis patients. We anticipate that if the

urine had not been filtered more of the samples would have been

positive. Patient serum samples were not tested on the LFI due to

insufficient volumes, but half contained concentrations of CPS

(as determined by ELISA) that could be detected by the AMD

LFI. This is encouraging since the mean concentration of

B. pseudomallei in patient blood is ,1 CFU/ml [5,6]. We

anticipate that CPS may be shed from internal abscesses into

the blood; so theoretically, even if the concentration of bacteria in

blood is low, the concentration of CPS may be within the

detectable range of the LFI. CPS could not be detected in filtered

urine samples that contain low levels of bacteria, suggesting that

CPS may not be shed into urine to detectable levels from the

blood.

This study describes the development and optimization of a

prototype LFI for the rapid diagnosis of melioidosis, including

protocols for the preparation of different sample types. This is

essential since the LFI will be used to test at least four different

bodily fluids, bacterial colonies grown on solid agar, and bacterial

liquid cultures from patient samples. We anticipate routine testing

can be performed on all patient sample types, and the clinical

sensitivity of the LFI will be related to the specific sample type

tested. The sample type producing the lowest sensitivity will most

likely be blood; this is related to the low levels of B. pseudomallei

found in this sample type [5,6]. However, we believe when the LFI

is used to test urine, sputum, and pus, high sensitivity will be

achieved due to the increased CFU/ml values in these matrices.

Now that we have developed reliable sample preparation

guidelines we will perform a larger preclinical analysis in the

endemic areas of Thailand and Australia. The preclinical analysis

will compare the performance of the LFI with the TTS-1 real-time

PCR assay, IFA, and culture (the current ‘‘gold standard’’ for

diagnosis of melioidosis). This will allow us to determine clinical

sensitivity and specificity and the diagnostic utility of the assay.

Further studies are underway to isolate additional CPS specific

mAbs that possess higher affinities than 3C5. Incorporation of

such mAbs into the AMD LFI may lead to increased analytical

and clinical sensitivity.
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Figure 5. Prototype AMD LFI for detection of B. pseudomallei
CPS in melioidosis patient samples. (A) Preliminary testing of a
variety of archived patient samples from Australia and Thailand. (B)
Detection of CPS in melioidosis patient urine samples (filtered) listed in
Table 2. Urine (50 ml) was combined with 100 ml of chase buffer and
applied to the sample pad. Note that samples that were positive by
antigen-capture immunoassay (Table 2) were also positive by LFI and
the levels of CPS detected between both assays are congruent.
doi:10.1371/journal.pntd.0002727.g005
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