101 research outputs found

    Optical characterization of AlN/GaN heterostructures

    Full text link
    AlN/GaN/sapphire heterostructures with AlN gate film thickness of 3–35 nm are characterized using photoreflectivity (PR) and photoluminescence (PL) spectroscopy. Under a critical AlN film thickness, the luminescence from the GaN channel layer near the interface proves to be excitonic. No luminescence related to the recombination of the two-dimensional electron gas (2DEG) is observed, in spite of high 2DEG parameters indicated by Hall-effect measurements. The increase of the AlN gate film thickness beyond a critical value leads to a sharp decrease in exciton resonance in PR and PL spectra as well as to the emergence of a PL band in the 3.40–3.45 eV spectral range. These findings are explained taking into account the formation of defects in the GaN channel layer as a result of strain-induced AlN film cracking. A model of electronic transitions responsible for the emission band involved is proposed. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71050/2/JAPIAU-94-8-4813-1.pd

    Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation

    Full text link
    Persistent photoconductivity (PPC) and optical quenching (OQ) of photoconductivity (PC) were investigated in a variety of n-GaN layers characterized by different carrier concentrations, luminescence characteristics, and strains. The relation between PPC and OQ of PC was studied by exciting the samples with two beams of monochromatic radiation of various wavelengths and intensities. The PPC was found to be excited by the first beam with a threshold at 2.0 eV, while the second beam induces OQ of PC in a wide range of photon energies with a threshold at 1.0 eV. The obtained results are explained on the basis of a model combining two previously put forward schemes with electron traps playing the main role in PPC and hole traps inducing OQ of PC. The possible nature of the defects responsible for optical metastability of GaN is discussed. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69582/2/JAPIAU-94-6-3875-1.pd

    Luminescence of GaN nanocolumns obtained by photon-assisted anodic etching

    Full text link
    GaN nanocolumns with transverse dimensions of about 50 nm were obtained by illumination-assisted anodic etching of epilayers grown by metalorganic chemical vapor deposition on sapphire substrates. The photoluminescence spectroscopy characterization shows that the as-grown bulk GaN layers suffer from compressive biaxial strain of 0.5 GPa. The majority of nanocolumns are fully relaxed from strain, and the room-temperature luminescence is free excitonic. The high quality of the columnar nanostructures evidenced by the enhanced intensity of the exciton luminescence and by the decrease of the yellow luminescence is explained by the peculiarities of the anodic etching processing. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69916/2/APPLAB-83-8-1551-1.pd

    Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors

    Full text link
    The impact of doping and metalorganic chemical vapour deposition growth conditions on the minority carrier lifetime of zinc- and carbon-doped InGaAs is reported. Room temperature photoluminescence measurements have been employed to obtain direct information on the non-radiative lifetime of the materials. Low growth temperature and low V/III ratio lead to the lower carrier lifetime of the carbon-doped InGaAs samples. InP/InGaAs heterostructure bipolar transistors were grown and fabricated using both zinc- and carbon-doped InGaAs layers as the base regions. The current gain values measured for these devices agree well with the values calculated from the carrier lifetime and mobility/diffusion coefficient measurements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48935/2/s20601.pd

    Progress Towards III-V Photovoltaics on Flexible Substrates

    Get PDF
    Presented here is the recent progress of the NASA Glenn Research Center OMVPE group's efforts in the development of high efficiency thin-film polycrystalline III-V photovoltaics on optimum substrates. By using bulk polycrystalline germanium (Ge) films, devices of high efficiency and low mass will be developed and incorporated onto low-cost flexible substrates. Our progress towards the integration of high efficiency polycrystalline III-V devices and recrystallized Ge films on thin metal foils is discussed

    LETTER TO THE EDITOR: Sharp variations in the temperature dependence of optical reflectivity from AlN/GaN heterostructures

    Full text link
    Sharp variations in optical reflectivity were observed when cooling and heating AlN/GaN heterostructures on sapphire substrates between room temperature and 10 K. The reflectivity was found to decrease at a definite temperature Tk in the downward temperature run, and to recover at Tr > Tk in the subsequent upward temperature run. The temperature behaviour of reflectivity exhibits memory on the cooling–heating cycles previously subjected to samples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48936/2/s302l1.pd

    GaSb solar cells grown on GaAs via interfacial misfit arrays for use in the III-Sb multi-junction cell

    Get PDF
    Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration

    The emergence of synaesthesia in a Neuronal Network Model via changes in perceptual sensitivity and plasticity

    Get PDF
    Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing

    Advanced Power Technology Development Activities for Small Satellite Applications

    Get PDF
    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community

    Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer

    Get PDF
    The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification
    • …
    corecore