121 research outputs found
Hybridising Minjian Religion in South China: Participants, Rituals, and Architecture
This study focuses on the ongoing hybridisation of minjian (folk or popular, literally “among the people”) religious activities in rural areas of south China. It demonstrates recent changes in religious hybridisation through extensive fieldwork in two villages. It also investigates intellectual debate on the concept of minjian religion and presents the relationship between state power and the religious revival in contemporary Chinese society. It then draws on fieldwork data to examine the hybrid nature of Chinese minjian religion from three aspects: the diversification of participants, the performative hybridisation of rituals, and the blending of spatial layouts. The main argument is that the revival of minjian religion involves the hybridisation of mystical and secular elements and of traditional and modern elements through the complex interactions between rural communities and official authorities
The combined effect of a novel formula of herbal extracts on bacterial infection and immune response in Micropterus salmoides
Herbal extracts have been considered as ideal alternative to antibiotics in aquaculture and application of combinatory effective extracts always can exhibit the enhanced bioactivity with high efficiency. In our study, a novel herbal extract combination GF-7, which is composed of Galla Chinensis, Mangosteen Shell extracts as well as the effective parts of Pomegranate peel and Scutellaria baicalensis Georgi extracts, was prepared and applied for the therapy of bacterial infection in aquaculture. The HPLC analysis of GF-7 was also investigated for quality control and chemical identification. In the bioassay, GF-7 had excellent antibacterial activity against various aquatic pathogenic bacteria in vitro, and the related MIC values were between 0.045 and 0.36 mg/mL. After feeding Micropterus salmoide with GF-7 (0.1, 0.3, and 0.6%, respectively) for 28 days, the activities of ACP, AKP, LZM, SOD, and CAT of the liver in each treatment group were significantly increased and the content of MDA was significantly decreased. Meanwhile, the hepatic expression of the immune regulators including IL-1β, TNF-α, and Myd88 at different times was up-regulated in varying degrees. The challenge results exhibited a good dose-dependent protective effect on M. salmoides infected with A. hydrophila, which was further confirmed by liver histopathology. Our results imply that the novel combination GF-7 is a potential natural medicine for the prevention and treatment of numerous aquatic pathogenic infectious diseases in aquaculture
Recommended from our members
Self-Healing, Reconfigurable, Thermal-Switching, Transformative Electronics for Health Monitoring.
Soft, deformable electronic devices provide the means to monitor physiological information and health conditions for disease diagnostics. However, their practical utility is limited due to the lack of intrinsical thermal switching for mechanically transformative adaptability and self-healing capability against mechanical damages. Here, the design concepts, materials and physics, manufacturing approaches, and application opportunities of self-healing, reconfigurable, thermal-switching device platforms based on hyperbranched polymers and biphasic liquid metal are reported. The former provides excellent self-healing performance and unique tunable stiffness and adhesion regulated by temperature for the on-skin switch, whereas the latter results in liquid metal circuits with extreme stretchability (>900%) and high conductivity (3.40 × 104 S cm-1 ), as well as simple recycling capability. Triggered by the increased temperature from the skin surface, a multifunctional device platform can conveniently conform and strongly adhere to the hierarchically textured skin surface for non-invasive, continuous, comfortable health monitoring. Additionally, the self-healing and adhesive characteristics allow multiple multifunctional circuit components to assemble and completely wrap on 3D curvilinear surfaces. Together, the design, manufacturing, and proof-of-concept demonstration of the self-healing, transformative, and self-assembled electronics open up new opportunities for robust soft deformable devices, smart robotics, prosthetics, and Internet-of-Things, and human-machine interfaces on irregular surfaces
Phenylpropane biosynthesis and alkaloid metabolism pathways involved in resistance of Amorphophallus spp. against soft rot disease
Soft rot of konjac (Amorphophallus spp.) is a devastating disease caused by the bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc) with serious adverse effects on plantation development, corm quality and crop yield due to the current lack of effective control measures. The main objective of the present study was to elucidate the mechanisms underlying plant resistance to soft rot disease. A combination of transcriptomic and metabolomic analyses demonstrated significant enrichment of differentially expressed genes (DEG) and differentially accumulated metabolites (DAM) associated with plant hormones, phenylpropanoid biosynthesis and, in particular, alkaloid metabolism, in Amorphophallus muelleri following Pcc infection compared with A. konjac, these data implicate alkaloid metabolism as the dominant mechanism underlying disease resistance of A. muelleri. Quantitative real-time polymerase chain reaction analysis further revealed involvement of PAL, CYP73A16, CCOAOMT1, RBOHD and CDPK20 genes in the response of konjac to Pcc. Analysis of the bacteriostatic activities of total alkaloid from A. muelleri validated the assumption that alkaloid metabolism positively regulates disease resistance of konjac. Our collective results provide a foundation for further research on the resistance mechanisms of konjac against soft rot disease
Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency
Ridge-furrow cultivation (RF) is a popular dryland agricultural technique in China, but its effects on maize yield, total water consumption during crop growing stage (ET), and water use efficiency (WUE) have not been systematically analyzed. Here we conducted a meta-analysis of the RF effects on maize yield, ET and WUE based on the data collected from peer-reviewed literature. Yield, ET and WUE varied with climate, soil and mulching management. Averaged across all the geographic locations, RF increased the yield and WUE of maize by 47 % and 39 %, respectively, but no effects on ET. An increase in the yield and WUE occurred under RF in regions regardless of the mean growing season air temperature (MT) or a mean precipitation during the growing season (MP), although there was a trend that RF is more beneficial under low MP. RF also decreased ET in regions with MT>12 °C. RF increased the yield and WUE in regions with medium or fine soil texture. RF increased the yield, ET, and WUE in regions with low soil bulk density (BD) (≤1.3 g cm−3). But in areas where BD is larger than 1.3 g cm−3, RF only increased the yield and WUE. RF increased the yield and WUE with or without mulching, but decreased ET when no mulching was used. Together, optimizing RF effects on the yield, ET and WUE in maize was largely dependent on environmental conditions and management practices
Crop yield and soil organic carbon under ridge–furrow cultivation in China: A meta-analysis
Ridge–furrow cultivation (RF) is a popular emerging technique that can increase crop productivity in dry areas. However, the efficacy of RF on crop yield and soil organic carbon (SOC) remains uncertain under different climate and management conditions. Here, we compiled data from 48 publications to evaluate the response of yield and SOC to RF in China. Overall, our meta-analysis showed that RF increased yield by 30.2%, but it had no effects on SOC. When differentiated based on different categories, yield and SOC varied by crop species, climate, soil textures, mulching management, and ridge–furrow patterns. RF increased the yield of wheat, maize, soybean, rape, linseed, potato, and SOC under soybean cultivation. Yield increase with RF was also consistent across temperature and precipitation. Yield increase was observed in all the soil textures. There were no RF effects on SOC under different soil textures. RF enhanced yields under no mulching, straw mulching and plastic film mulching, but increased SOC only in combination with straw mulching. A higher yield increase was observed under alternating small and large ridges (ASLR) than alternating ridges and furrows (AR). RF decreased SOC by 11.7% under AR, but had no effects on SOC under ASLR. Together, ASLR with straw mulching could increase yield and SOC in coarse soil texture regions with annual mean temperature >10°C and annual mean precipitation > 400 mm. This study showed the importance of considering local environmental conditions with management practices in identifying appropriate RF practices for improving crop productivity and soil carbon sequestration
Correlation between magnetic domain structures and quantum anomalous Hall effect in epitaxial MnBi2Te4 thin films
We use magnetic force microscopy (MFM) to study spatial uniformity of
magnetization of epitaxially grown MnBi2Te4 thin films. Compared to films which
exhibit no quantum anomalous Hall effect (QAH), films with QAH are observed to
have more spatial uniformity of magnetization with larger domain size. The
domain evolution upon magnetic field sweeping indicates that the magnetic
domains or the spatial nonuniformity of magnetization originates from the
strong pinning of the inherent sample inhomogeneity. A direct correlation
between the Hall resistivity and the domain size has been established by
analyzing a series of thin films with and without QAH. Our observation shows
that one has to suppress the spatial nonuniformity of magnetization to allow
the Hall resistivity to be quantized. The fact that a sizable longitudinal
resistivity remains even for the QAH sample suggests a quantized Hall insulator
scenario. Our work provides important insights to the understanding of the
quantization mechanism and the dissipation of the QAH state in MnBi2Te4 system.Comment: 14 pages, 4 figure
- …