3 research outputs found

    Hydrogel-based treatments for spinal cord injuries

    No full text
    Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI

    Zn2+ incorporated composite polysaccharide microspheres for sustained growth factor release and wound healing

    No full text
    The development of new wound dressings has always been an issue of great clinical importance and research promise. In this study, we designed a novel double cross-linked polysaccharide hydrogel microspheres based on alginate (ALG) and hyaluronic acid methacrylate (HAMA) from gas-assisted microfluidics for wound healing. The microspheres from gas-assisted microfluidics showed an uniform size and good microsphere morphology. Moreover, this composite polysaccharide hydrogel microspheres were constructed by harnessing the fact that zinc ions (Zn2+) can cross-link with ALG as well as histidine-tagged vascular endothelial growth (His-VEGF) to achieve long-term His-VEGF release, thus promoting angiogenesis and wound healing. Meanwhile, Zn2+, as an important trace element, can exert antibacterial and anti-inflammatory effects, reshaping the trauma microenvironment. In addition, photo cross-linked HAMA was introduced into the microspheres to further improve its mechanical properties and drug release ability. In summary, this novel Zn2+ composite polysaccharide hydrogel microspheres loaded with His-VEGF based on a dual cross-linked strategy exhibited synergistic antimicrobial and angiogenic effects in promoting wound healing
    corecore