133 research outputs found

    Production of htt_bar and htT_bar in littlest Higgs model with T-parity

    Full text link
    In the littlest Higgs model with T-parity, which predicts a pair of T-even and T-odd partners for the top quark, the top quark interactions are altered with respect to the Standard Model predictions and deviation will manifest in various top quark processes. In this work we examine the effects in htt_bar productions at the ILC and LHC. We find that in the allowed parameter space, the cross sections can be significantly deviated from the Standard Model predictions and thus provide a good test for the littlest Higgs model with T-parity. We also examine the new production channel, the htT_bar or hTt_bar production, at the LHC, which give the same final states as htt_bar production due to the dominant decay T->Wb. We find that, compared with htt_bar production, this new production channel can have a sizable production rate for a T-quark below TeV scale. Such a production will be counted into htt_bar events or possibly extracted from htt_bar events, depending on if we can distinguish the T-quark from the top quark from mass reconstructions.Comment: version in PRD (11 pages, 6 figs

    Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive Survey

    Full text link
    Data quality is the key factor for the development of trustworthy AI in healthcare. A large volume of curated datasets with controlled confounding factors can help improve the accuracy, robustness and privacy of downstream AI algorithms. However, access to good quality datasets is limited by the technical difficulty of data acquisition and large-scale sharing of healthcare data is hindered by strict ethical restrictions. Data synthesis algorithms, which generate data with a similar distribution as real clinical data, can serve as a potential solution to address the scarcity of good quality data during the development of trustworthy AI. However, state-of-the-art data synthesis algorithms, especially deep learning algorithms, focus more on imaging data while neglecting the synthesis of non-imaging healthcare data, including clinical measurements, medical signals and waveforms, and electronic healthcare records (EHRs). Thus, in this paper, we will review the synthesis algorithms, particularly for non-imaging medical data, with the aim of providing trustworthy AI in this domain. This tutorial-styled review paper will provide comprehensive descriptions of non-imaging medical data synthesis on aspects including algorithms, evaluations, limitations and future research directions.Comment: 35 pages, Submitted to ACM Computing Survey

    Spin Manipulation by Creation of Single-Molecule Radical Cations

    Get PDF
    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Research progress and development tendency of polymer drilling fluid technology for unconventional gas drilling

    Get PDF
    Unconventional gas includes tight sandstone gas, shale gas, coalbed methane, and natural gas hydrate. With huge reserves, unconventional gas has become the most important natural gas resource successor after the end of the “Easy Oil era.” The drilling fluid is an indispensable wellbore working fluid for unconventional gas drilling with multiple functions. The polymer drilling fluid (PDF) is the most common, longest developed, and most diverse drilling fluid type. With advantages of easily controlled rheology, convenient on-site performance maintenance, and specifically low cost and weak environment pollution, the PDF is gradually replacing the oil-based drilling fluid as the first choice for unconventional gas drilling. The invention of the non-disperse low-solid-content PDF in the 1960s shows that PDF technology has entered the stage of scientific development, and until now, its development has generally experienced five stages: beginning, developing, improving, re-developing, and re-improving. Dozens of polymer additives and PDF systems have been invented and applied, which have solved severe drilling problems, greatly improved drilling efficiency, and promoted exploration and development in difficult oil and gas resources. This paper first reviews the research progress of PDF technology according to the timeline by introducing the composition, feature, advantages, and disadvantages of some representative polymer additives and PDF systems, emphatically the function and mechanism of stabilizing wellbores, lubricating drilling tools, and protecting reservoirs of the biomimetic wellbore-strengthening PDF and amphiphobic high-efficiency PDF in unconventional gas drilling. Then, combining future global demands, especially China’s strategic needs of oil and gas exploration and development, the development tendency of PDF technology is critically illustrated by introducing several potential research directions including intelligent PDF, ecological PDF, and PDF for natural gas hydrate and deep layer gas resources

    Virtual Effects of Split SUSY in Higgs Productions at Linear Colliders

    Full text link
    In split supersymmetry the gauginos and higgsinos are the only supersymmetric particles possibly accessible at foreseeable colliders like the CERN Large Hadron Collider (LHC) and the International Linear Collider (ILC). In order to account for the cosmic dark matter measured by WMAP, these gauginos and higgsinos are stringently constrained and could be explored at the colliders through their direct productions and/or virtual effects in some processes. The clean environment and high luminosity of the ILC render the virtual effects of percent level meaningful in unraveling the new physics effects. In this work we assume split supersymmetry and calculate the virtual effects of the WMAP-allowed gauginos and higgsinos in Higgs productions e+e- -> Z h and e+e- -> \nu_e \bar_\nu_e h through WW fusion at the ILC. We find that the production cross section of e+e- -> Zh can be altered by a few percent in some part of the WMAP-allowed parameter space, while the correction to the WW-fusion process e+e- -> \nu_e \bar_\nu_e h is below 1%. Such virtual effects are correlated with the cross sections of chargino pair productions and can offer complementary information in probing split supersymmetry at the colliders.Comment: more discussions added (7 pages, 10 figs

    A Genome-Wide Analysis of StTGA Genes Reveals the Critical Role in Enhanced Bacterial Wilt Tolerance in Potato During Ralstonia solanacearum Infection

    Get PDF
    TGA is one of the members of TGACG sequence-specific binding protein family, which plays a crucial role in the regulated course of hormone synthesis as a stress-responsive transcription factor (TF). Little is known, however, about its implication in response to bacterial wilt disease in potato (Solanum tuberosum) caused by Ralstonia solanacearum. Here, we performed an in silico identification and analysis of the members of the TGA family based on the whole genome data of potato. In total, 42 StTGAs were predicted to be distributed on four chromosomes in potato genome. Phylogenetic analysis showed that the proteins of StTGAs could be divided into six sub-families. We found that many of these genes have more than one exon according to the conserved motif and gene structure analysis. The heat map inferred that StTGAs are generally expressed in different tissues which are at different stages of development. Genomic collinear analysis showed that there are homologous relationships among potato, tomato, pepper, Arabidopsis, and tobacco TGA genes. Cis-element in silico analysis predicted that there may be many cis-acting elements related to abiotic and biotic stress upstream of StTGA promoter including plant hormone response elements. A representative member StTGA39 was selected to investigate the potential function of the StTGA genes for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) assays indicated that the expression of the StTGAs was significantly induced by R. solanacearum infection and upregulated by exogenous salicylic acid (SA), abscisic acid (ABA), gibberellin 3 (GA3), and methyl jasmonate (MeJA). The results of yeast one-hybrid (Y1H) assay showed that StTGA39 regulates S. tuberosum BRI1-associated receptor kinase 1 (StBAK1) expression. Thus, our study provides a theoretical basis for further research of the molecular mechanism of the StTGA gene of potato tolerance to bacterial wilt
    • …
    corecore