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TGA is one of the members of TGACG sequence-specific binding protein family, which
plays a crucial role in the regulated course of hormone synthesis as a stress-responsive
transcription factor (TF). Little is known, however, about its implication in response to
bacterial wilt disease in potato (Solanum tuberosum) caused by Ralstonia solanacearum.
Here, we performed an in silico identification and analysis of themembers of the TGA family
based on the whole genome data of potato. In total, 42 StTGAs were predicted to be
distributed on four chromosomes in potato genome. Phylogenetic analysis showed that
the proteins of StTGAs could be divided into six sub-families. We found that many of these
genes have more than one exon according to the conserved motif and gene structure
analysis. The heat map inferred that StTGAs are generally expressed in different tissues
which are at different stages of development. Genomic collinear analysis showed that there
are homologous relationships among potato, tomato, pepper, Arabidopsis, and tobacco
TGA genes. Cis-element in silico analysis predicted that there may be many cis-acting
elements related to abiotic and biotic stress upstream of StTGA promoter including plant
hormone response elements. A representative member StTGA39 was selected to
investigate the potential function of the StTGA genes for further analysis. Quantitative
real-time polymerase chain reaction (qRT-PCR) assays indicated that the expression of the
StTGAs was significantly induced by R. solanacearum infection and upregulated by
exogenous salicylic acid (SA), abscisic acid (ABA), gibberellin 3 (GA3), and methyl
jasmonate (MeJA). The results of yeast one-hybrid (Y1H) assay showed that StTGA39
regulates S. tuberosum BRI1-associated receptor kinase 1 (StBAK1) expression. Thus,
our study provides a theoretical basis for further research of the molecular mechanism of
the StTGA gene of potato tolerance to bacterial wilt.
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INTRODUCTION

Plants face a variety of challenges and stresses during growth and
development. Specific transcription factors (TF) in plants can
specifically regulate the expression of plant genes to enhance the
ability of plants to adapt to stress environment. In plants, the gene
regulatory network which TFs participate in plays a crucial role in
the stress response pathway (Li B. et al., 2019). The members of
the basic Region-Leucine Zipper (bZIP) gene family are crucial
regulators, which play an important role in development, stress
adaptation, and hormone synthesis of plants (Azeem et al., 2020;
Kumar et al., 2021). The TGACG sequence-specific binding
protein family (TGA) TFs belong to a subfamily of bZIP and
play an important role in abiotic stress responses during the
period of plant growth (Ke et al., 2022). The TGA TFs include
large regulatory regions, which may affect DNA-binding by
allosteric or electrostatic interaction as for the bZIP (Salladini
et al., 2020).

Some TGA members play crucial roles in stress mitigation.
Evidence revealed that the role of TGA class II is important
during the response of Arabidopsis to control reactive oxygen
species (ROS) levels (Ariel et al., 2021). In addition, there was
evidence that Cr6+ can cause the binding of TGA3 to the
L-cysteine desulfhydrase (LCD) promoter in plants, thus
increasing the expression of LCD (Fang et al., 2017).
Furthermore, glutaredoxins (GRXs) may play a crucial role in
the formation of floral organs with TGA (Rouhier et al., 2015).
ROXYs (GRX,CC-type glutaredoxin, named ROXYs in
Arabidopsis thaliana) and CC-type GRXs from rice and corn
interact with the TGA family to control developmental processes
(Gutsche et al., 2017; Uhrig et al., 2017).

An important role of TGAs during plant development has
been covered in a variety of plants. It can be seen that the TGA
gene family participates in many signaling pathways in plants and
plays a crucial role during plant growth. In soybean, the TGA
plays a crucial role in response to nitrogen availability (Ullah
et al., 2019). Biosynthesis of salicylic acid (SA) is indirectly
modulated by TGA1 and TGA4 TF (Budimir, et al., 2020).
Nonexpresser of pathogenesis-related genes (NPR1) recruits
TGA TFs in the presence of SA and facilitates gene expression
to establish plant immunity (Chen et al., 2019). Multiple TGA
members have been shown to play a key role in plant immunity.
Oryza sativa TGA2 (OsTGA2) can directly regulate defense-
related genes (Moon et al., 2018). The key points in the
regulation of sunflower resistance by TGA may be involved in
the resistance of sunflower to Verticillium dahliae (Guo et al.,
2017). In addition, ROXY can be used as TGA-dependent
promoter to control the negative regulators of detoxification
genes in A. thaliana (Huang et al., 2016). Brassinoidsteroid
(BR) induces apoplastic ROS, which activates the TGA2 factor
and triggers the metabolism of pesticide residues in tomato (Hou
et al., 2019). Taken together, studies of TGA TFs and the TGA
family as a whole demonstrate that TGA proteins play important
roles in regulating multiple biological processes in plants.

Although there are many studies on TGA, no study has been
reported in potato (Solanum tuberosum), which is an important
food crop and widely cultivated and consumed all over the world

(Gebhardt, 2016). There are many kinds of major diseases
affecting potato production worldwide, and bacterial wilt
caused by Ralstonia solanacearum is the second one in
importance (Barchenger et al., 2022). R. solanacearum is a
soil-borne, devastating plant pathogen and uses type III
effectors to inhibit the plant immune system (Salanoubat
et al., 2002; Qi et al., 2022). This pathogen has a remarkably
wide host range and global distribution and is involved in the
invasion of plant root to the vessel of xylem and may eventually
lead to plant death (Gutsche and Zachgo, 2016; Ferreira et al.,
2017).

In the current study, a comprehensive investigation of TGA
TFs in potato was conducted, and the analysis of the member
distribution, evolutionary model, gene structure, and expression
patterns was performed. In addition, we found a representative
member S. tuberosum TGA39 (StTGA39) that could be induced
by abiotic/biotic stress and has a critical role in enhanced bacterial
wilt tolerance in potato during R. solanacearum infection. This
will lay a foundation for further research on the function of
StTGA genes.

MATERIALS AND METHODS

Identification and Classification of StTGA
Gene Family
StTGA gene identification in the potato genome was performed
using BLAST and hidden Markov models (HMM) search methods
(Wang et al., 2018). We downloaded the potato genome from the
Phytozome database. Briefly, the HMM seed file of delay of
germination 1 (DOG1) domain (accession number: PF14144),
which belongs to TGA, was downloaded from the Pfam database
(http://pfam.xfam.org/). A round of HMM scan was performed for
all the obtained hits against the Pfam database. We used the
HMMER program to search all putative TGA protein sequences
and extracted the corresponding sequence IDs, with expectation
value (E-value) set to 1.0. The sequences IDs were submitted to the
Spud DB (http://solanaceae.plantbiology.msu.edu/). The results
from the two methods were compared, and common sequence
IDs were selected. In total, 42 members of the StTGA gene family in
potato were predicted and named StTGA01–StTGA42. The
information about the renaming StTGA genes in potato is
provided in Supplementary Additional File S1. The
physicochemical parameters, such as molecular weight and
isoelectric points (pIs), and subcellular localization of each StTGA
protein were predicted via ExPASy (http://web.expasy.org/
protparam/) and PSORT (https://wolfpsort.hgc.jp/) online tools
(Liang et al., 2017).

Phylogenetic Analysis, Conserved Motif
Analysis, In Silico Chromosome Mapping,
and Gene Structure Analysis of StTGA
We constructed the phylogenetic tree by MEGA 7.0 via the
neighbor-joining (NJ) method, using 1000 bootstrap iterations
and default parameters (Gao et al., 2018). The potato gff3.
annotation file was parsed to extract the genome locations of
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the identified TGA genes. According to this information, we
visualized the in silico predicted chromosomal distribution of
StTGA genes by TBtools software (Chen et al., 2020). The in silico
exon–intron distribution of StTGA genes was predicted through
the Gene Structure Display Server (GSDS) website (http://gsds.
gao-lab.org/index.php). Conserved motifs of StTGA genes were
predicted by the online service Multiple Em for Motif Elicitation
(MEME) (Fan et al., 2021a). The information of in silico
chromosome location of StTGA was retrieved from potato
genome data downloaded from the phytozome database (Chen
et al., 2020). The secondary and 3D structure prediction of StTGA
proteins was performed using SOPMA and I-TASSER web
servers, and the data were captured using Discovery Studio 4.5
(Geourjon and Deléage, 1995; Ambrish et al., 2010). The
upstream 2000 bp region of the initiation codon ATG of each
StTGA gene was used to search the promoter region in the
downloaded sequence and predicted potential cis-acting
elements of each binding site on PlantCARE website (Lescot
et al., 2002; Zhu et al., 2020).

Collinearity Analysis of StTGAs
Pair-wise all-against-all BLAST was performed for potato,
tomato, tobacco, Arabidopsis, and pepper protein sequences.
The obtained results and the gff3. annotation file were then
determined by the Multiple Collinearity Scan toolkit
(MCScanX) for determination of the gene duplication type
(Wang et al., 2012; Fan et al., 2021b). Microsynteny
relationships between potato and the other four species were
analyzed to show the gene homology relationship (Gutsche and
Zachgo, 2016), and visualized by TBtools (Chen et al., 2020).

RNA-Seq Analysis of StTGAs
Based on the digital expression RNA-Seq data retrieved by
previous methods (Cao et al., 2021), the expression level of
StTGAs in different tissues and developmental stages under
abiotic/biotic stress was indicated using Fragments Per
Kilobase of transcript sequence per Millions base pairs
(FPKM), which were retrieved through the website Spud DB
(http://solanaceae.plantbiology.msu.edu/) (Cao et al., 2021). The
heatmaps of StTGA expression and hierarchical clustering
analysis were conducted using the TBtools software.

Furthermore, the co-expression pattern of StTGA genes was
analyzed based on the Pearson correlation coefficient (PCC) and
graphically presented using the Cytoscape package. The PCC and
mutual rank (MR) were calculated according to previous reports
(Da et al., 2019). Forty-two potato StTGA differently expressed
genes and 24 related genes were analyzed by co-expression
network analysis (Renamed in Supplementary Additional File
S2). The interaction network of differentially expressed TFs was
built by STRING: functional protein association networks
(https://string-db.org/) and determined by Cytoscape (Kohl
et al., 2011; He et al., 2022). When the PCC was greater than
0.8, it was assumed that they were co-expressed.

Plant Material and Growth Conditions
Potato plants (ZHONG 3,2 n = 48, tetraploid cultivation) used in this
studywere provided by theChineseAcademy ofAgricultural Sciences

(CAAS). The pots whichwere used to culture these plants were 10 cm
in diameter and 15 cm in height, and they contained 450ml peat and
vermiculite (3:1, volume ratio). In the process of culture, S. tuberosum
(ZHONG 3) wild-type plants were grown under long-day conditions
(16 h, 26°C, day/8 h, 18°C, night) on the abovementioned mixed soil.
The light intensity was about 3000 lx, and the relative humidity was
75% (Gao et al., 2010; Yu et al., 2021a).

Bacterial Strains and Inoculum
R. solanacearum belongs to PO41 strain (seed type II, race
3 biotype 2) (He et al., 1983), which was cultured in a CPG
medium, and then the solution was diluted to 108 cfu/ml (Optical
Density, OD600 = 0.2). Potatoes were inoculated by the root
injury irrigation method when they grew to the stage of two-
week-old potato plants with 7–8 leaves (Yu et al., 2021b). The
control group was inoculated with the same amount of water. At
12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 hpi after inoculation, we
sampled the leaves of the experimental group and control
group. All samples were frozen in liquid nitrogen immediately
and then stored at −80°C (Kong et al., 2016). Three replicates were
performed for both R. solanacearum and mock inoculation.

Hormone Treatment
When potatoes grew to the stage of two weeks with 7–8 leaves, the
leaves were sprayed with 100 μM abscisic acid (ABA), 350 μM,
gibberellin 3 (GA3), 50 μM SA, and 50 μM methyl jasmonate
(MeJA) (Yu et al., 2021a). At 1, 2, 3, 4, and 5 dpi, we sampled the
leaves of each hormone treatment. All samples were frozen in
liquid nitrogen immediately and then stored at −80°C until these
samples were used to extract RNA (Fan et al., 2021a). Each
treatment was repeated three times.

Verification of RNA-Seq Data
The RNA-seq data of the StTGA39 gene were verified by qRT-PCR
according to the methods of Schmittgen and Livak, 2008. The leaf
samples for RNA extraction were previously stored at −80°C, and the
total RNA was isolated using the TRIzol reagent (Invitrogen,
Carlsbad, CA, United States) according to the manufacturer’s
protocol. The mRNA was re-transcribed into cDNA using the
Prime Script cDNA Synthesis Kit (TransGen, Beijing, China).
Then, cDNA was used as a template for qRT-PCR, which was
performed on the Quant Studio 3 qRT-PCR System (Thermo Fisher
Scientific, Shanghai, China) (Kong et al., 2016). The following
primers were used in the process of qRT-PCR with three
replicates for each gene as described previously: StTGA-FP: TCC
AGCACATCCAACACC; StTGA-RP: TTCACCAAGATTTCC
CAC. ACTIN of potato served as the internal control (GenBank
Accession: X55747), and the following primers were used in the
process of qRT-PCR with three replicates for each gene as described
previously: Actin-F: TATAACGAGCTTCGTGTTGCAC; Actin-R:
ACTGGCATACAGCGAAAGAACA.

Staining Treatment and Quantifying Levels
of Malondialdehyde
After the potato seedlings were inoculated with R. solanacearum
or water for 72 hpi, the leaves were collected for observing the
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FIGURE 1 |Chromosomal location, phylogenetic relationship, exon–intron structure, and conservedmotif analysis of StTGA protein. (A)Chromosomal locations of
StTGA genes. The gene names of StTGA are shown in red to the right of the chromosome. (B) Phylogenetic tree of potato StTGA based on its amino acid sequence.
Branch lines with different colors indicated different subgroups. The proteins on the tree can be divided into six distinct subfamilies, which are indicated by different
colored backgrounds. (C) Conserved motif of StTGA proteins analyzed by online program MEME server. Different colored boxes indicated different motifs. (D)
Gene structure of StTGA. The exon–intron structure of StTGA genes visualized by online tool GSDS 2.0, yellow boxes indicated exons, and black lines indicated introns.
(E) Amino acid composition of 10 conserved motifs.
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infection of R. solanacearum. The leaves were left in trypan blue
solution for 24 h (Yu et al., 2021b). Levels of H2O2 were detected
using the DAB staining method by the DAB Substrate Kit
(Solarbio, Beijing, China). Leaves were soaked in the solution
to stain for 3–10 min under dark conditions (Christensen et al.,
1997; Song et al., 2021). The leaves were sampled from inoculated
plants by R. solanacearum at 12, 24, 36, 48, 60, 72, 84, 96, 108, and
120 hpi for quantifying levels of MDA. The content of MDA of
these leaves was tested by using an MDA Assay Kit (Abbkine,
Wuhan, China) according to the previous method (Islamoglu
et al., 2018). OD at 532 and 600 nm was determined by a
microplate reader.

Y1H Assays
In order to analyze whether there is a TGACG cis-element in the
upstream promoter sequence of the gene homologous to S.
tuberosum Brassinosteroid insensitive 1 (BRI1)-associated
receptor kinase 1 (StBAK1), we analyzed the relationship
between StTGA1 and StBAKl by the Y1H assay Kit
(Clontech, State of California, United States) in this study.
Briefly, the sequence of StBAK1 with 1512 bp was amplified
from S. tuberosum cDNA by gene-specific primers and digested
by EcoRI (CAATTC) and MluI (ACGCGT) so that the

oligonucleotide sequences containing TGA cis-elements and
other corresponding promoter sequences were cloned into
the pHIS2 to generate the reporter vector. All of the
constructs were co-transformed into yeast strain
Y187 according to the manufacturer’s instructions (Liu et al.,
2016). The full-length open-reading frame (ORF) of StTGA
(855bp) was fused to the GAL4 activation domain in the vector
pGADT7 digested with EcoRI (CAATTC) and BamHI
(GGATCC) to get a fusion protein TGA-pGADT7 (effector
vector) (Huang et al., 2010). The others were carried out
following the manufacturer’s instructions.

Statistical Analysis
Standard values and standard error of experimental data were
calculated using Microsoft Excel 2016 and n = 3 for independent
experiments according to a t-test. Analyses of the significance of
differences were conducted via the data processing System. The
PCC is calculated by the SPSS online services tool (https://spssau.
com/indexs.html). PCR efficiency was estimated from the data
obtained from the exponential phase of each individual
amplification plot. The expression level of each gene of
interest (GOI) is presented as 2−ΔΔCt; where ΔΔCt = ΔCtGOI-
ΔCtContorl; ΔCtGOI = CtGOI-CtActin; ΔCtContorl = CtControl-CtActin.

FIGURE 2 | Cis-acting elements analysis in the promoter regions of StTGA. The promoter cis-elements were analyzed by PlantCARE, and the number of
ciselements was searched in the 2,000 bp region upstream of the translation initiation site of the StTGA gene. Cis-elements were divided into two different types:
phytohomone and stress. Expressed by different colors according to their number. The darker the color, the higher the frequency of appearance, and the number
indicates the number of cis-elements.
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RESULTS

Genome-Wide Identification of StTGA
Genes
In total, 42 StTGA genes were identified in S. tuberosum, and
they were named StTGA01–StTGA42. This study revealed that
the largest number of amino acids is 488 in the StTGA gene
family, and the relative molecular weight of these genes is
between 17,290.85 and 54,371.83 Da. In addition, we
predicted the pIs of StTGA protein. The results showed
that the pI of StTGA17 is 4.96, which is the lowest in the
StTGA protein, while the pI of StTGA01 is 9.1, which is the
highest. Furthermore, we speculated the StTGA may be
distributed in many parts of the cell and most of StTGA

proteins are located in cytoplasm and nucleus
(Supplementary Table S1).

In Silico Chromosomal Location,
Phylogenetic Relationship, Exon–Intron
Structure, and Conserved Motif Analysis
Using TBtools, we drew the location map of StTGA and found
they are distributed on four chromosomes of potato
(Figure 1A). Chromosome St12 had 29 StTGAs, chromosome
St08 contains six, St01 with four, and St09 contain three StTGAs.
In order to study the StTGA family, we constructed the
phylogenetic tree by MEGA 7 via the NJ method, which is
shown in Figure 1B. The StTGA family was divided into six

FIGURE 3 | Comparative orthologous relationships of TGA from five species. TBtools was used to analyze the gene homology relationship between potato,
tomato, pepper, Arabidopsis, and tobacco TGA gene families and visualize the gene homology relationship. TGA genes connecting five species genome are shown in
colored links.
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groups (designated classes I to VI) with 9, 7, 3, 12, 4, and
7 StTGAs. Then, the exon–intron structure of StTGAs was
further analyzed. The number of exons of StTGA genes was
between 1 and 11, of which six genes contained only one exon,
and 42.86% of genes had five exons or less Figure 1D.
Furthermore, 10 high conserved motifs were predicted in
Figure 1C and Figure 1E. Compared to other classes, motifs
10 were exclusively found in classes IV, motifs 9 in classes I and
II, and motifs 8 in classes IV and VI, separately Figure 1C.

Cis-Acting Element Prediction Analysis of
StTGAs
In order to study the transcriptional regulation, the 2000 bp
promoter region upstream of the StTGA genes was extensively
analyzed by PlantCARE. The cis-elements responding to

abiotic/biotic stresses and hormone treatments with the
prediction score being greater than or equal to 5 were
considered for further analysis (Figure 2). The results
showed that the numbers and distribution patterns of the
cis-elements also greatly varied among the promoters. This
means that the StTGA genes might have different regulatory
mechanisms in expression, implying their functional divergence
in responses to abiotic/biotic stress and phytohormone
treatments.

Collinear Analysis of StTGAs
To study the evolutionary relationship of StTGA, we selected S.
tuberosum as the core and identified collinearities between
tomato, tobacco, Arabidopsis, pepper, and potato TGA genes.
There are 46 pairs of one-to-one microsynteny relations
(Figure 3). Some of the genes could not be assigned to any

FIGURE 4 | Heat map of StTGA genes under different stresses and hormone treatments in potato. The heat map displayed the StTGA expression patterns of
treatment in leaves, whole plant, or in different tissues and organs. (A) In leaves, distance values range from 0.00 to 70.00, (B) in the whole plant, distance values range
from 0.00 to 140.00, (C) in different tissues or organs indicated to the right of the heat map, distance values range from 0.00 to 120.00. The gene names are indicated at
the bottom. Distance value range is depicted by the gradient of colors ranging from light yellow (lowest distance value indicating high similarity between genomes) to
red (highest distance value indicating low similarity between genomes). Stress treatment in leaves is indicated to the right of the heat map.
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of the chromosomes. In addition, 21 orthologous gene pairs
were detected between potato and tomato, 20 orthologous
genes were found between potato and pepper,
10 orthologous gene pairs were identified between potato
and Arabidopsis, and two orthologous gene pairs were
detected between potato and tobacco. The collinear
relationship among these five species is shown in
Supplementary Additional File S3.

Expression Profile of StTGAs
We have retrieved the expression data of StTGA via the RNA-
Seq Expression Browser and the heat map of gene FPKM value
constructed using the TBtools software. We found that 11 of the
StTGAs (StTGA 01, StTGA 02, StTGA03, StTGA 04, StTGA 11,
StTGA 16, StTGA 23, StTGA 28, StTGA 34, StTGA 41, and
StTGA42) were not expressed in almost all organs. On the
contrary, StTGA05, StTGA15, StTGA25, StTGA32, and
StTGA36 played roles in different developmental stages and
tissues (Figure 4). For verification of RNA-seq data, the potato
seedlings were treated with the exogenous hormones ABA, GA3,
SA, and MeJA, and the results showed the inducible upregulated
expression of the StTGA39 gene (Figure 5). By comparison, the
effect of SA was relatively strong, while that of the MeJA, ABA,
and GA3 was light for inducing the upregulation.

Co-Expression Network Construction
To determine the relationship of StTGA proteins and their
interactors further, we performed a gene co-expression
network analysis based on the STRING database. Twenty-four
other potato proteins, such as 60S ribosomal protein L18 (RPLs),
DNA-binding proteins (DBPs), and Glutaredoxin (GRXs), were
identified Figure 6, which exhibited a co-expression relationship
with StTGA (Figure 6A). The co-expression network comprised
36 pairs, and each pair of nodes was directly or indirectly
connected to each component (Figure 6A). StTGA and
StTGA members, StTGA and other potato proteins presented
co-expression relationships, albeit with different weight values
(Figure 6B). In particular, StTGA01 (StTGA28), StTGA02
(StTGA40), StTGA05 (StTGA13), etc., presented co-expression
relationships (Figure 6A).

Prediction of StTGA Structure
The secondary structure of StTGA39 was predicted by SOPMA. It
was found that the a-helix of StTGA protein consists of
188 amino acids, accounting for 67.14%; the random coil of
StTGA protein consists of 78 amino acids, accounting for 27.86%;
the extended strand of StTGA protein consists of nine amino
acids, accounting for 3.21%; and the β-turn of StTGA protein
consists of five amino acids, accounting for 1.79% (Figure 7A). A

FIGURE 5 | Time-course gene expression pattern of StTGA39 induced by exogenous phytohormones. The relative expression level of StTGA39 at different time
points in potato inoculated with plant hormones (A)GA3, (B) ABA, (C) SA and (D)MeJA was analyzed by qRT-PCR. mRNA levels were normalized to actin (Student’s t-
test, n = 3 independent experiments, data shown are mean ± standard deviation).
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three-dimensional structure of StTGA39 was built with the
I-TASSER web server. Five possible models of StTGA protein
were predicted on the 3D structure, according to the website
modeling with Discovery Studio 4.5 Client. The conservative
domains of these models were basically the same (Figure 7B).

Effect of R. solanacearum Infection on
Potato
In order to confirm whether StTGA39 was induced by R.
solanacearum, the induced expression of StTGA39 mRNA in
potato seedlings inoculated with R. solanacearum was compared
and analyzed by the qRT-PCR method (Figure 8A). We found
that the expression level of StTGA39 was low when plants were
inoculated with water. In comparison with the control group, the
expression increased at 60 hpi and reached the highest level at
72 hpi after inoculating with the highly pathogenic strain PO41.
That is to say, the expression of the StTGA39 gene was up-

regulated when stressed by R. solanacearum and may play an
important role in potato resistance to bacterial wilt. Similar
results have been confirmed by other family members of
StTGA (Supplementary Additional File S4).

In order to determine the defense response, various
histochemical analyses were carried out on potato leaves
(Figure 8). Under the stress of R. solanacearum solution of
108 cfu/L, the effect of MDA content in potato seedling leaves is
shown in Figure 8B. It could be seen from Figure 8B that with
the prolongation of infection time of R. solanacearum, the
change of MDA content in potato seedling leaves showed a
trend, which was upregulated once at 24 h and then decreased at
intervals of 24 h. Callose strengthens the plant cell walls and
prevents cells from being invaded by pathogens. Aniline
staining analysis and trypan blue analysis showed that the
induction of callose deposition and the HR-like cell death
was significantly increased in the treated potato leaves
(Figure 8C and Figure 8D).

FIGURE 6 | Construction of the StTGA co-expression network. (A) Co-expression network analyses are performed to characterize the 36 differentially expressed
StTGA. In the network, nodes represented RNAs, while lines represented co-expression and prediction relationship. (B) PCC of all genes in each gene show in this figure.
Pearson correlation matrix between all StTGAs. (positive correlations = dark blue with value, negative correlations = light blue, non-significant correlations = white).
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FIGURE 7 | Secondary and tertiary structure of potato StTGA39 protein. (A) Secondary structure of StTGA39 was predicted by SOPMA in potato. Blue lines
represent alpha-helix, purple lines represent random coil, red lines represent extended strand, and green lines represent β-turn. (B) Three-dimensional structure of
StTGA39 was built with the I-TASSER web server.

FIGURE 8 | Upregulated expression pattern of StTGA39 and concentration of MDA during R. solanacearum infection on potato. (A) Expression pattern of
StTGA39 was induced by R. solanacearum. (B) Levels of MDA in potato plants were assessed at 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 hpi inoculated with R.
solanacearum. (C) Phenotype of two-week-old potato leaves after 72 hpi with flg22 treatment was compared with WT. (D) Cell death in potato was detected by
histochemical staining with trypan blue staining. (E) Photograph showed the phenotype of the WT and was taken 3 days after R. solanacearum infection. mRNA
levels were normalized to actin (Student’s t-test, n = 3 independent experiments, data shown are mean ± standard deviation).
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Y1H Assay
BAK1 is a well-established receptor for defense-related genes in
plants. To identify if StTGA1 could interact directly with StBAK1,
Y1H analysis was used (Figure 9). The yeast expression vector
TGA-pGADT7 and BAK-pHis2 were constructed. The results of
Y1H showed that all the Y1H gold strains co-transformed with
pHIS2 vectors and clones grew on SD (-Leu, -Trp) medium,
indicating that the co-transformation was successful. The growth
was different at different concentrations of 3-AT-deficient SD
(-His, -Leu, -Trp) medium. On SD (-His, -Leu, -Trp) medium,
the growth inhibition of the pGADT7/BAK-pHis2 self-activated
group deepened with the increase of 3-AT concentration. The
growth condition of the TGA-pGADT7/BAK-pHis2 group was
slightly better than that of the control group, although the
experimental group could not grow on SD (-His, -Leu, -Trp;
90 mM) (Figure 9). The results showed that StTGA1 might bind
to StBAK1.

DISCUSSION

TGA TFs have been reported to function in various biological
processes in plants (Jiang et al., 2021; Martins et al., 2022) and
members of the TGA TFs play crucial roles in response to
microbial pathogens in plants, such as Arabidopsis, soybean,
rice, and tobacco (Pontier et al., 2002; Van et al., 2011; Moon
et al., 2018; Ullah et al., 2019). There is a lack of reports on the
potential link between TGA TFs and resistance to bacterial wilt
caused by R. solanacearum in potato. In the present study,
42 StTGA genes were identified based upon the entire genome
sequences of the potato, and the total number of TGA in potato
was slightly expanded compared to that in tomato, tobacco, and
pepper identified in this study but lower than that in Arabidopsis
(Supplementary Additional File S1), which was different from
the earlier reports (Ullah et al., 2019). This was mainly due to the
continuous updates in the database and the different approaches
used by authors. In addition, the phylogenetic analysis and
collinearity was carried out. The results indicated that the

StTGA family is conserved in the evolutionary history with
the TGA TFs orthologs of other plants. This result
corresponds well with previous observations in many plant
species (Moon et al., 2018; Ullah et al., 2019; Jiang et al., 2021).

In order to investigate the expression patterns in response to
different abiotic and biotic stresses, 10 members were selected for
further study. The expression heat map demonstrated that the TGA
TFs may have played significant and complex roles in potato
(Figure 4), which was reflected in at least two aspects. First, the
RNA-seq data-based heatmap showed that the expression ofmost of
the StTGAs was significantly different under abiotic/biotic stresses,
which was consistent with previous studies (Jiang et al., 2021).
Second, the same gene showed different or even opposite
expression patterns under different stresses or in different tissues.
For instance, the StTGA17 genewas upregulated in leaves under heat
stress but downregulated under salt stress (Figure 4B). These results
illustrate that these genes are widely involved in the response to
various stresses and participate in a complex cross-regulatory
network and signaling pathways (Duan et al., 2022).

To uncover the possible signal-associated functions of StTGAs
in response to hormone stress, we conducted qRT-PCR to analyze
their relative expressions under SA, MeJA, ABA, and GA3

treatments (Figure 5). This induction may be related to the
upstream cis-element elements in the promoters of the genes.
According to the analysis of cis-acting elements (Figure 2) and
the results of qRT-PCR (Figure 5), we speculated StTGA could be
induced by multiple phytohormones andmight play a crucial role
in multiple hormone signal pathways. Consistent with our results,
some cis-elements play an important role in responses to ABA
(Baker et al., 1994; Busk and Pagés, 1998; Li J. et al., 2019). There
is an interaction between NPR1 and TGA TFs, which eventually
leads to activation of SA-dependent response (Rahman et al.,
2012). Studies have shown that a R. solanacearum effector targets
TGA TFs to subvert SA signaling (Qi et al., 2022). Furthermore,
the JA signal pathway is related to the function of Tripterygium
wilfordii hook. F. TGA1 (TwTGA1) (Han et al., 2020). All of these
research studies further support our idea that TGAmay play a key
role in the regulation of these hormone signal pathways.

FIGURE 9 | Y1H showing the association of StTGA39 with the promoter of the StBAK1-20 gene. Y1H assay for determination of StTGA39-StABAK1-
20 interaction. Growth of yeast cells transformed with the effector vector and the reporter vector on SD (-His, -Leu, -Trp) supplemented different concentrations of 3-AT.
The positive control is pGADT7-53/p53-pHis2 vector and negative control is pGADT7/p53-pHis2 vector.
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An important goal in this study was to speculate the function of
the StTGA gene in the response mechanism of potato to R.
solanacearum. In potato, the invasion of R. solanacearum could
cause up-regulation of StTGA gene expression according to
Figure 8A. The result showed that StTGA was involved in
resisting the invasion of R. solanacearum. Although the detailed
mechanismneeds further study, to prove this view, our study showed
some other data related to resistance. Plants could resolve pathogens
such as bacteria by causing ROS burst (Li et al., 2016; Ferreira et al.,
2017). Evidence revealed that TGA class II plays an important role in
the tolerance response to control ROS levels in Arabidopsis (Ariel
et al., 2021). In addition, ROS induces gene expression and stress
response and has regulatory roles in a wide range of important plant
biological processes (Xia et al., 2010). Consistent with this possibility,
R. solanacearum infection can result in enhanced production of ROS
and lead to ROS-related oxidative damage (Ferreira et al., 2017). The
results of DAB staining confirmed there is a mechanism in S.
tuberosum to resist this adverse effect (Figure 8D). Furthermore,
MDA can indicate the degree of membrane per-oxidation and
further support the results of DAB staining (Figure 8B). The
abovementioned views further support StTGA TFs are crucial
regulatory factors in potato resistance to bacterial wilt, and our
further data on identification of the target gene of this TF seem to
support this view.

TGA TFs recognize the TGACG-motif (TGA-binding site)
within the promoters of their target genes (Hou et al., 2019). To
detect whether StTGA39 binds to the TGACG-motif present in
the StBAK1-20 promoter (Supplementary Additional File S5) in
yeast, the Y1H assays were performed, and the result suggested
that StTGA39 specifically binds to the TGACG-motif in the
promoter of the BAK1 gene which plays an essential role in
regulated plant immunity (Beg et al., 2013). The results showed
that the StBAK1-20 gene involved in the PAMP-triggered
immunity (PTI) signal pathway (Beg et al., 2013) and
interacted with StTGA in our materials. The abovementioned
results indicated that the StTGA can function by combining with
the promoter region of StBAK1-20 (Supplementary Additional
File S6). To our knowledge, there are few reports on the TGA-
promoted transcription of BAKs despite recent reports that TGAs
directly activate respiratory burst oxidase homolog D (RBOHD)
and pathogenesis-related protein 1 (PR1) expression in
Arabidopsis (Qi et al., 2022; Shimizu et al., 2022).

CONCLUSION

To sum up, we conducted a genome-wide analysis of the StTGA
gene family in potato and primarily explored the role of them. A
total of 42 StTGA genes were identified from the potato genome.

The structure diversity, chromosomal distribution, and
evolutionary history of StTGA were comprehensively analyzed.
These results extended the understanding on the abundance and
diversity of StTGA genes in this important crop, which may serve
as a fundamental resource for the molecular breeding of potato.
However, the detailed molecular mechanism needs to be further
studied. Taken together, this study lays the foundation for further
investigation of StTGA in potato.
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