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Unconventional gas includes tight sandstone gas, shale gas, coalbed methane, and

natural gas hydrate. With huge reserves, unconventional gas has become the most

important natural gas resource successor after the end of the “Easy Oil era.” The

drilling fluid is an indispensablewellboreworking fluid for unconventional gas drilling

withmultiple functions. The polymer drilling fluid (PDF) is themost common, longest

developed, and most diverse drilling fluid type. With advantages of easily controlled

rheology, convenient on-site performance maintenance, and specifically low cost

andweak environment pollution, the PDF is gradually replacing the oil-based drilling

fluid as the first choice for unconventional gas drilling. The invention of the non-

disperse low-solid-content PDF in the 1960s shows that PDF technology has

entered the stage of scientific development, and until now, its development has

generally experienced five stages: beginning, developing, improving, re-developing,

and re-improving.Dozensof polymer additives andPDF systemshavebeen invented

and applied, which have solved severe drilling problems, greatly improved drilling

efficiency, and promoted exploration and development in difficult oil and gas

resources. This paper first reviews the research progress of PDF technology

according to the timeline by introducing the composition, feature, advantages,

and disadvantages of some representative polymer additives and PDF systems,

emphatically the function and mechanism of stabilizing wellbores, lubricating

drilling tools, and protecting reservoirs of the biomimetic wellbore-strengthening

PDF and amphiphobic high-efficiency PDF in unconventional gas drilling. Then,

combining future global demands, especially China’s strategic needs of oil and gas

exploration and development, the development tendency of PDF technology is

critically illustrated by introducing several potential research directions including

intelligent PDF, ecological PDF, and PDF for natural gas hydrate and deep layer gas

resources.
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1 Introduction

Drilling is an engineering technology that constructs a channel

from the ground to the underground. It is not only themost essential

method to obtain underground resources including crude oil,

natural gas, water, and terrestrial heat but also a must to acquire

geological information to promote geoscience research (Ladd et al.,

1967; Hammond, 1975; Eichelberger, 1997; CelsoMorooka et al.,

2001; Hanson, 2003; Hou et al., 2018). The drilling fluid is the

“blood” of drilling, which is a complex fluid composed of various

additives withmultiple functions including suspending and carrying

rock cuttings, preventing wellbore collapse, balancing formation

pressure, protecting oil and gas reservoirs, cooling and lubricating

drilling equipment, and transmitting hydraulic horsepower

(Browning and Chesser, 1972; Growcock and Harvey, 2005). The

drilling fluid affects whether drilling can advance normally and

decides directly whether the well could be successfully constructed.

Since clean water was used as the drilling fluid in the 1880s, drilling

fluid technology has experienced more than a century’s

development. Hundreds of drilling fluid additives and dozens of

drilling fluid systems have been invented, which plays an

irreplaceable role in exploring and developing oil and gas resources.

According to the type of the dispersion medium, the drilling

fluid can be classified into the water-based drilling fluid, oil-based

drilling fluid, and gas drilling fluid. The water-based drilling fluid

is the most widely used type and always occupies the dominating

place. The polymer drilling fluid (PDF) is an essential type of

water-based drilling fluid. In a broad sense, the water-based

drilling fluid using a polymer as the major additive is regarded as

the PDF. Owning advantages of low solid content, fast rate of

penetration (ROP), easy-to-control rheological property, and low

cost, the PDF has become a drilling fluid kind with the fastest and

highest development and the widest application (Browning and

Chesser, 1972; Growcock and Harvey, 2005). Since the non-

dispersed low-solid PDF was invented in the 1960s (Lummus and

Anderson, 1964; Lawhon and Simpson, 1967; Field, 1968;

Lanman and Willingham, 1970; Duane, 1972; Mondshine,

1973; Foshee et al., 1977; Miller, 1980; Blattel and Rupert,

1982; Steiger, 1982; Hale and Mody, 1993; Parizad et al.,

2018), the PDF entered the scientific development stage.

Various functional polymer additives and PDF systems have

been invented, which solved many drilling problems, strongly

supported the development of oil and gas resources, and greatly

promoted the development of drilling fluid technology.

In the past few years, with the ending of the “Easy Oil Era” and

under the background of complex changes of international climate

and drastic fluctuation of oil price, global oil and gas exploration and

development have advanced rapidly toward difficult resources,

especially unconventional, low permeable, deepwater, and deep

layer. In particular, unconventional gas including shale gas, tight

sandstone gas, and coalbed methane is highly focused. It is not only

because unconventional gas has huge reserves which is estimated to

reach 4,000 trillion cubic meters, about 4.5 times than conventional

gas reserves, but also because of the successful commercialization of

shale gas which proves the feasibility and economic value of

developing unconventional gas. Drilling unconventional gas

encounters complex wellbore structures, difficult formation

conditions, and special well completion methods, bringing new

challenges for PDF technology. Higher and more special

performances are needed urgently to meet drilling requirements,

which greatly promotes the development of PDF technology.

According to the timeline, the development progress could be

approximately divided into five stages, namely, “beginning,”

“development,” “improvement,” “re-development,” and “re-

improvement.” In the following section, the research progress

of PDF technology will be introduced based on representative

achievements at each stage, emphatically PDF technology for

unconventional gas drilling. Furthermore, combining global

demands, especially China’s strategic needs of oil and gas

exploration and development, the development tendency of

PDF technology in the future is critically illustrated.

2 Research progress of PDF
technology

2.1 Beginning stage

In the 1960s, scientific and technical personnel began to

realize that components of the drilling fluid greatly affect the

drilling efficiency. The content of useless solids, especially rock

cuttings and non-mud-making soil, is the major influencing

factor which decreases the ROP and increases the drilling

cost. Even though the low-solid drilling fluid is used at the

beginning, with drilling advances, useless solids are mixed-in

continuously and the content increases inevitably. Because the

particle size of most useless solids is at the submicro level, they

are difficult to be eliminated by solid-control equipment (only

available for size of tens of microns). As a result, the low-solid

drilling fluid still becomes high-solid drilling fluid eventually.

With the development of a polymer additive, it is found that

partially hydrolyzed polyacrylamide (PHPA) and the copolymers

of vinyl acetate and maleic acid (VAMA) have the ability of

optional flocculation (Figure 1) (Duane, 1972; Foshee et al., 1977;

Hale and Mody, 1993), i.e., they could flocculate useless solids

without flocculating bentonite, barite, and other useful solids.

Therefore, the use of these polymers can reduce the content of

useless solids effectively by aggregating fine solid particles into

thick particles which could be removed by solid-control

equipment. Centering on PHPA and VAMA, the non-

dispersed low-solid PDF was established (Lummus and

Anderson, 1964; Lawhon and Simpson, 1967; Field, 1968;

Lanman and Willingham, 1970; Mondshine, 1973; Miller,

1980; Blattel and Rupert, 1982; Steiger, 1982; Parizad et al.,

2018). In 1966, the Pan American Petroleum Corporation

used non-dispersed low-solid PDF technology first in western
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Canada, which greatly increased the ROP and reduced the

drilling cost by 2.5%. In the 1970s, this technology was used

in scale in the Deira Bay Basin in the United States, which

increased the ROP by 17%~28% and reduced the drilling cost by

over 20%. In 1973, China’s Shengli Oilfield used this technology,

increasing the average ROP by over 20%. So far, the non-

dispersed low-solid PDF is still used worldwide for high-speed

and low-cost drilling.

2.2 Development stage

The early-used PHPA and VAMA are simple in function

which makes PDF inadequate to meet diverse drilling

requirements of more complex strata. Therefore, different new

anionic polyacrylamide derivatives such as the 80 A series, PAC

series, and SK series were developed subsequently. A polymer

additive was then developed into pluralistic products with

different metal ions (Na+, K+, and NH4
+), different molecular

weights (10,000 Da–5,000,000 Da), and different charge densities

(10%–60%). The function of the polymer additive was also

expanded to a great extent, including flocculation,

encapsulation, inhibition, tackifying, gelation, and fluid loss

control (Lourenco et al., 2006; Payam et al., 2016; Oseh et al.,

2020). Diversified development of the polymer additive had led

to a variety of new PDF systems with improved performance

which expanded PDF’s availability scope. The typical

representative is a polymer/KCl drilling fluid system which is

still one of the most widely used PDFs for drilling water-sensitive

strata and the basis of high-performance water-based drilling

fluid for shale gas drilling (Steiger, 1982; Sharma and Kachari,

2010; Kharitonov et al., 2011).

2.3 Improvement stage

2.3.1 Cationic polymer drilling fluid
The contact between the drilling fluid and wellbore is

inevitable. The surface of the wellbore rock soaks in the

drilling fluid, while the inside of the wellbore rock could come

into contact with the drilling fluid’s filtrate since the filtrate could

permeate into the rock inside through pores and cracks. If the

wellbore rock contains high content of shale, clay, or other

components that are easy to hydrate, the contact with the

water-based drilling fluid will decrease the rock’s cohesion

and, thus, soften the wellbore, resulting in wellbore instability

or even collapse (Yew and Liu, 1992; Bybee, 2004; Zeynali, 2012;

Wenjun and Haiyan, 2014; Xiong et al., 2016; Zheng et al., 2016;

Hamza et al., 2019). In addition, it is known that cuttings will be

mixed-in continuously with the proceeding of drilling. Thus, for

drilling in strata where cuttings are made of these easy-to-hydrate

components, like a shale gas reservoir, the hydration and

dispersion of cuttings will largely increase the drilling fluid’s

viscosity and gel strength, which deteriorates the drilling fluid’s

rheological property (Bruton and McLaurine, 1993; Walker and

Li, 2000; Ahmad et al., 2019). In addition, for reservoirs

containing a high content of easy-to-hydrate components,

hydration causes swelling and fines migration which will

block oil and gas passage, leading to severe reservoir damage

(Zhang et al., 2011a; Memon et al., 2017; Ahamed et al., 2019; Ni

et al., 2019a; Lei et al., 2019). Obviously, the main cause of these

problems is hydration, swelling, and dispersion of water-sensitive

solids. If hydration, swelling, and dispersion could be weakened

or even avoided, these problems will be alleviated to a great

extent. Therefore, inhibition becomes one of the most important

properties of the water-based drilling fluid.

The inhibition of the drilling fluid is mainly attributed to an

inhibitor (Halliday et al., 1998; Qu et al., 2009; Yang et al., 2013;

Xuan et al., 2015; Saikia and Mahto, 2016a; Boul et al., 2016;

Saikia and Mahto, 2016b; Ferreira et al., 2016; Mech and Sangwai

Jitendra, 2016; Yang et al., 2017a; Huang et al., 2018a; An and Yu,

2018; Jiang et al., 2019a; Li et al., 2019a; Yang et al., 2019a; Li

et al., 2019b; Chu et al., 2019; Ma et al., 2019; Aftab et al., 2020).

Polymer additives developed in previous stages have certain

inhibitive performances. On one hand, they could adsorb onto

a solid’s surface and create a polymeric film which alleviates

water contact and infiltration. On the other hand, they could

weaken solid dispersion by multi-point adsorption. However,

FIGURE 1
Molecular structure of partially hydrolyzed polyacrylamide (A) and the copolymer of vinyl acetate and maleic acid (B) (both neutralized by
NaOH).
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inhibition is unsatisfactory because of weak binding between the

polymer and solid since these polymers are all anionic, while the

solid’s surface is rarely positively charged and mostly negatively

charged. Therefore, to improve the PDF’s inhibition, cationic

additives were developed and the cationic PDF was established

(Retz et al., 1991; Beihoffer et al., 1992; Rosa et al., 2005).

A typical cationic PDF is prepared with quaternary

ammonium salt or a low-molecular weight cationic polymer

(called small cation since they are either a small molecule or

low-molecular weight polymer) as the inhibitor and a high-

molecular weight cationic polymer (called large cation) as the

encapsulating agent (Retz et al., 1991; Fernandez, 2005; Beg et al.,

2018; Jiang et al., 2019a; Li et al., 2019a). The outstanding

inhibition of cationic PDF derives from the synergistic effect

between the small cation and large cation. The inhibition

mechanism could be summarized into three aspects as

follows. It is noted that this inhibition mechanism refers in

particular to the mechanism of inhibiting montmorillonite

which is the main hydration-causing composition of clay,

shale, and other easy-to-hydrate components.

1) Surface adsorption of the small cation

The small cation could preferentially adsorb onto

montmorillonite by the electrostatic attraction that existed

between its cationic group (particularly R3N
+) and the

negatively charged surface of montmorillonite (particularly

AlOH2
-) (Shaikh et al., 2018). The other side of the small

cation, namely, the hydrophobic group, could gather and form

a hydrophobic film on montmorillonite’s surface which prevents

water contact.

2) Crystal layer insertion of the small cation

The swelling of montmorillonite is caused by water

infiltration into adjacent crystal layers and expansion of layer

spacing. The small cation could insert into montmorillonite’s

crystal layer, adsorb onto adjacent layers, and occupy the

interlayer space. The occupation will squeeze out the water

infiltrated between the adjacent layers and further pull close

layer spacing, which not only alleviates montmorillonite swelling

but also prevents water re-infiltration (Huang et al., 2018a; An

and Yu, 2018; Jiang et al., 2019a; Ma et al., 2019).

3) Bridging of the large cation

A high-molecular weight cationic polymer has multiple

cationic groups and also a long molecule chain, which could

adsorb onto surfaces of different montmorillonite particles. This

multi-point adsorption could flocculate and encapsulate

dispersed montmorillonite particles since the intermolecular

repulsion between particles is screened, which alleviates

montmorillonite dispersion (Rosa et al., 2005).

The cationic PDF has been applied successfully in the

Shenyang Oilfield, Beibu Gulf, and Erlian Oilfield (Liu, 1992).

Its outstanding inhibition effectively enhances wellbore stability

and prevents mud-making of cuttings. Nevertheless, the massive

use of the cationic PDF brings severe environmental problems

since the cationic polymer is biotoxic. The cationic polymer

additive is also incompatible with an anionic polymer additive,

easy to adsorb on drilling equipment, and its overpowering

inhibition prevents bentonite dispersion, and thus, makes it

difficult to control fluid loss. Although the cationic PDF is

limited nowadays, it provides the thought and method of

using cations to improve PDF’s inhibition. The inhibition

mechanism of the small cation and large cation is still the

base for developing a high-performance inhibitor today. The

schematic illustration of the inhibition mechanism of a newly

developed biodegradable inhibitor poly-l-arginine (PArg) on

bentonite is shown in Figure 2 as an example (Li et al., 2020a).

2.3.2 Amphoteric PDF
The dispersion of bentonite used in PDFs is very influential

on fluid loss. Generally, the more dispersed bentonite is, the

higher will be the quality of the filter cake bentonite could form

under pressure and the lower the fluid loss. Obviously, it comes to

the problem of balancing PDF’s inhibition and fluid loss as

indispensable inhibition abates bentonite dispersion. Since the

anionic polymer additive is effective in controlling fluid loss but

lacks inhibition and the cationic polymer additive has strong

inhibition but is unfavorable for controlling fluid loss, an

amphoteric polymer additive combining advantages of both

was invented and the amphoteric PDF was established around

the 1990s (Niu et al., 1995; Niu et al., 1998; Warren et al., 2003;

Liu et al., 2005; Cao et al., 2017).

The typical amphoteric PDF takes an amphoteric polymer

viscosity reducer (like XY-27) and an amphoteric polymer

encapsulator (like FA367) as the core. By using other

cooperative additives, systems including the non-dispersed

low-solid amphoteric PDF, low-density oil-mixed amphoteric

PDF, and high-density amphoteric PDF were invented. Field

application showed that the amphoteric PDF resolved the

contradiction between inhibition and fluid loss to a great extent.

A significant advantage of the amphoteric polymer additive is

good electrolyte tolerance, which enables it to function effectively

in brine of a monovalent salt or even divalent salt (Warren et al.,

2003; Adnan Hamad et al., 2020; Li et al., 2022a; Liu et al., 2022).

For example, the amphoteric terpolymer of acrylamide (AM), 2-

acrylamido-2-methylpropane sulfonic acid (AMPS), and

diallyldimethylammonium chloride (DMDAAC) could be

used as a fluid loss agent against calcium contamination.

Research indicates that bentonite and the AM-AMPS-

DMDAAC terpolymer could together form a steady net

structure by intermolecular electrostatic attraction. The net

structure prevents contact between bentonite and Ca2+, which

alleviates the compression of Ca2+ on bentonite’s diffusion
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double-layer and, thus, promotes bentonite dispersion (Figure 3)

(Liu et al., 2016).

For some time, it was found that a balanced amphoteric

polymer (BAP) whose anionic group and cationic group are

stoichiometric could function steadily in strong brine and

simultaneously under high temperature. Such an advantage of

the BAP results from its strong anti-polyelectrolyte behavior, that

is, unlike a common polyelectrolyte, BAP’s chain conformation

undergoes an absolute extension instead of shrinkage when

salinity of the medium is increased. This is because the

electrolyte weakens the BAP’s intramolecular electrostatic

attraction by a screening effect and then causes the polymer

chain to extend osmotically. The extension also happens via

temperature modulation as high temperature weakens the ionic

bond as well (Figure 4) (Ranka et al., 2015). From this

perspective, the BAP is an electrolyte- and temperature-

friendly polymer. It is to be noted that sufficient extension of

the polymer chain is a prerequisite for the polymer additive to

function in the drilling fluid, and it is feasible to develop polymer

additives in high-electrolyte content and a high-temperature

environment based on the BAP. Until now, the BAP tackifier

and BAP fluid loss agent synthesized with the same monomers

are developed (Figure 5), and a saturated saltwater (NaCl or KCl)

PDF with simple formulation, low polymer additive loading, and

no use of any other salt- or temperature-tolerant materials is

established. Laboratory research indicates that the saturated

saltwater PDF could maintain a stable rheological property

and low fluid loss under 150 C for nearly 100 h, showing a

promising field application prospect (Guancheng et al., 2019).

2.4 Re-development stage

Since the 21st century, the worldwide consumption of

hydrocarbon fuels soars, averagely reaching 1.8% of annual

growth (BP. Statistical Review of World Energy, 2020).

Conventional oil and gas resources cannot completely satisfy

the huge demand; thus, unconventional resources, especially

unconventional natural gas, have gradually become another

focus of the energy industry. The most successful

representative is shale gas whose commercial development not

only alleviates the imbalance between energy supply and demand

but also initiates a revolution that has changed the world energy

structure (Wakamatsu and Aruga, 2013; Wang et al., 2014).

The horizontal well is the commonest well type for shale gas

development. Most shale gas horizontal wells are drilled using the

oil-based drilling fluid for safety purposes. For one thing, as

discussed previously, using the water-based drilling fluid to drill

highly water-sensitive shale always causes wellbore collapse. For

another, drilling the curve section and long horizontal section of

the horizontal well needs excellent lubricity in case of a sticking

accident, and oil just naturally has better lubricity than water.

However, two big drawbacks of the oil-based drilling fluid,

environment pollution and high cost, have become

increasingly influential along with its massive use; thus, the

FIGURE 2
Schematic illustration of the inhibition mechanism of the inhibitor PARG on bentonite.

FIGURE 3
Schematic illustration of the net structure formed by
bentonite and the AM-AMPS-DMDAAC terpolymer under calcium
contamination (ADD represents the terpolymer).
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realization of “replacing oil with water” is increasingly excepted.

Therefore, scientific and technical personnel focus on developing

the high-performance water-based drilling fluid (HPWDF)

(Bland et al., 2002; Dye et al., 2005; Morton et al., 2005; Patel

et al., 2007).

At the beginning, the HPWDF refers particularly to the

“water-based drilling fluid which could simulate performance,

mainly inhibition and lubricity, of oil-based drilling fluid and is

capable of drilling shale gas horizontal wells.” It uses amino-

terminated polyoxypropylene (ATP) as the core additive along

with an encapsulating agent, lubricant, rheology modifier, and

fluid loss agent. ATP is a low-molecular weight polymer with

outstanding inhibitive performance (Figure 6) (DYE et al., 2006).

Its inhibition mechanism is similar to that of a small cation;

however, its inhibitive effect is much more moderate as the

amino group produces a weaker electrolyte effect than the

quaternary ammonium group. Satisfactory inhibition could be

achieved by large ATP addition while moderate bentonite

hydration and colloidal stability of the drilling fluid could be

guaranteed at the same time.With the progress of technology, the

HPWDF category is quite expanded now that it is neither

exclusive for shale gas drilling nor composed of ATP. Its

category and composition are multifarious. In the following

section, we choose several representative HPWDFs and

introduce each composition, performance, feature, and

application effect.

1) ULTRADRILL and HydraGlyde

Dedicating to replacing the oil-based drilling fluid by

inhibitive water-based drilling fluid early, M-I SWACO

reported the UltraDrill system around 2003, which is

FIGURE 4
Schematic illustration of the chain extension of the BAP via the electrolyte and temperature modulation.

FIGURE 5
General molecular structure of the BAP tackifier and BAP fluid loss agent.

Frontiers in Energy Research frontiersin.org06

He et al. 10.3389/fenrg.2022.1058412

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1058412


composed of the inhibitor ULTRAHIB, polymer-encapsulating

agent UltraCap, ROP enhancer UltraFree, and other cooperative

additives like the polymer fluid loss agent PolyPAC-UL and the

biopolymer tackifier MC-VIS. ULTRADRILL not only has

excellent inhibition and lubricity but is also non-toxic. The

cuttings it produces could be discharged directly into the sea.

It has been used in the scale in the Gulf of Mexico, the

United States, Brazil, Australia, Libya, and Saudi Arabia (Eia,

2006; Eia and Hernandez, 2006; Hodder et al., 2006; Kong et al.,

2006; Burden et al., 2013). China used ULTRADRILL in 2004 for

the first time in offshore wells CFD11-2-A5 and CFD11-2-

A8 and achieved excellent field application (Huang, 2004).

The formulation and the basic performance are shown in

Table 1 and Table 2, respectively.

HydraGlyde is another HPWDF system invented by M-I

SWACO which is formed mainly with an ROP enhancer

HydraSpeed-ROP, inhibitor HydraHib, and a polymer

encapsulating agent HydraCap. HydraGlyde has stable

rheological property, good inhibition, and particularly

outstanding lubricity. Application in Wolfcamp formation

in the Midland Basin of West Texas indicates that

HydraGlyde increased the ROP by 16% compared with

other inhibitive water-based drilling fluids (Table 3)

(Schlumberger Service, 2021).

2) Pure-Bore

INNOSPEC developed the Pure-Bore system (Clear

Solutions Service, 2022). A polymer named Pure-Bore is the

core additive with multiple functions, which can control and

adjust inhibition, rheological property, fluid loss, and lubricity, as

required. Pure-Bore is easy to maintain, non-toxic,

biodegradable, and particularly low in additive loading. The

whole use of all the additives in a typical Pure-Bore system is

lower than 1.7 kg/m3, while a typical polymer/KCl PDF needs

higher than 20 kg/m3 in average. Until now, Pure-Bore has been

well-applied in North Sea, Norway, and China.

3) PERFORMAX and LATIDRILL

Around 2005, Baker Hughes developed the PERFORMAX

system for shale gas reservoirs (Ramirez et al., 2005; Ramirez

et al., 2007), which consists of a blocking agent MAX-SHIELD,

stabilizer MAX-PLEX, inhibitor MAX-GUARD, polymer-

encapsulating agent NEW-DRILL, and lubricant PENETREX.

PERFORMAX owns outstanding inhibition by the combined use

of polyalcohol and an aluminum-based polymer. Subsequently,

Baker Hughes introduced nanotechnology and developed the

LATIDRILL system which is the first report of the

commercialized application of nanotechnology in the water-

based drilling fluid (Bakerhughes Media Center, 2012; Riley

et al., 2012; Witthayapanyanon et al., 2013; Yadav et al.,

2015). The application result in Cameroon Sea shows that

LATIDRILL could improve wellbore stability, prevent bit-

balling, decrease friction, and elevate the ROP to a great extent.

4) PERFORMADRIL

Halliburton developed the PERFORMADRIL system with

the shale stabilizer PERFORMATROL, bridging agent

FIGURE 6
Molecular structure of amino-terminated polyoxypropylene (R represents H or CH3; n&10).

TABLE 1 Formulation of ULTRADRILL.

Composition Addition

Water 1 m3

KCl 83.8 kg

ULTRAHIB 5.4 L

UltraCap 11.4 kg

PolyPAC-UL 7.13 kg

Germicide LX-CODE 102 0.95 kg

UltraFree 5.56 kg

MC-VIS 4.27 kg

Frontiers in Energy Research frontiersin.org07

He et al. 10.3389/fenrg.2022.1058412

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1058412


BARACARB, inhibitor GEM GP, clay PERFORMATROL, and

KCl (Halliburton Service, 2012; Halliburton Service, 2013).

PERFORMATROL is the key additive which is a low-

molecular weight polyamine derivative with the ability to

stabilize shale by mitigating its swelling and dispersion

tendency. PERFORMADRIL could be used in a wide

temperature range and holds the highest environmental rating

(GOLD). It has been applied in North Sea and Qatar, saving

millions of dollars of drilling cost and more than 10 days of rig

time (Table 4).

5) Multi-component synergistic HPWDF

Under the consideration that shale wellbore instability is a

complex and difficult problem which cannot be solved

properly by using a single additive, researchers developed

multi-component synergistic HPWDF systems based on the

synergistic effect between polyamine, the aluminum-based

polymer, and deformable polymer microsphere (Qiu et al.,

2007; Schlumberger Service, 2021). Each of the three polymers

has its own function and working mechanism. Polyamine

functions as an inhibitor to alleviate shale hydration and

wellbore softening. The aluminum-based polymer could

yield an aluminum-based precipitate that covers the surface

of the wellbore rock, reducing the contact between the drilling

fluid and wellbore. The deformable polymer microsphere

functions as a sealing agent which could plug into

microcracks of shale and stabilize the wellbore rock’s space

structure, as well as block water infiltration. The co-action of

these polymers could largely improve the stability of the shale

wellbore. The multi-component synergistic HPWDF is also

very effective in other unstable formations in addition to shale

which has been widely used in Saudi Arabia, Egypt, and

Africa, as well as in China’s Shengli Oilfield and Xinjiang

Oilfield.

2.5 Re-improvement stage

The HPWDF successfully replaces the oil-based drilling fluid

for drilling shale gas horizontal wells in many cases and elevates

PDF performance to an unprecedented level. Nevertheless, in the

TABLE 2 Basic performance of ULTRADRILL.

Well depth/ft Density/
g/cm3

aAV/
mPa.s

aPV/
mPa.s

aYP/
Pa

bGel10’’/Gel10’/
Pa/Pa

cFLHTHP/
mL

Thickness of the filter
cake/mm

2,415 1.17 41 22 19.42 4/6 2.8 0.79

4,360 1.17 53 29 24.53 9/17 2.5 0.79

5,725 1.22 56 32 24.53 9/22 2.4 0.79

7,028 1.20 54 30 24.53 9/23 2.8 0.79

7,880 1.21 56 32 24.53 9/20 2.8 0.79

aAV, PV, and YP are the abbreviations of apparent viscosity, plastic viscosity, and yield point in the Bingham model, respectively.
bGel10″ and Gel10’ are the abbreviations of the gel strength tested after 10 s and 10 min of standing, respectively.
cFLHTHP is the abbreviation of high-temperature high-pressure fluid loss, similarly hereinafter.

TABLE 3 Comparison of HydraGlyde and other inhibitive water-based drilling fluids applied in offset wells.

HydraGlyde system well Competitor well 1 Competitor well 2

Start depth/ft 9,050 9,222 9,187

End depth/ft 15,285 14,687 14,850

Interval length/ft 6,235 5,465 5,663

Total interval drilling days 3.5 3.6 4.8

Average ROP/ft/h 95 76 88

ROP difference/% +16 - -

Maximum torque/ft.lbf 21,500 26,000 26,500

Torque difference/% −18 - -
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past decade, higher performance requirements for the drilling

fluid are raised by the following aspects.

First, the ending of the “Easy Oil Era” has made global oil and

gas exploration and development advance rapidly toward

difficult resources. Most newly discovered unconventional

gases are buried in strata with increasingly complex and

difficult conditions. Second, complex structure wells headed

by long horizontal wells are applied increasingly frequently

(Stolte et al., 2012; Wang et al., 2020). Third, the

environmental protection standard has reached a very strict

level. Lastly, oil price fluctuates drastically and international

climate changes unpredictably. PDF technology urgently needs

re-improvement to better meet the requirements of high

performance, low environmental damage, and low cost, and

thus, its development enters the “re-improvement” stage.

A marked characteristic of PDF development in this stage is

the huge emergence of new drilling fluid additives whose type

includes polymeric (Khalil and January 2012; An et al., 2015a;

Madkour et al., 2016; Zoveidavianpoor and Samsuri, 2016; Peng

et al., 2017; Zhang et al., 2017; Ahmad et al., 2018; Sepehri et al.,

2018; Xianmin et al., 2018; Xie et al., 2018; Chang et al., 2020; Ma

et al., 2020; Paul et al., 2020; Rana et al., 2020; Shan et al., 2022),

nano-based (Kosynkin et al., 2012; An et al., 2015b; Li et al.,

2016a; An et al., 2016; Yang et al., 2017b; Li et al., 2018a; Huang

et al., 2018b; Li et al., 2018b; AI-Yasiri and Weng, 2019; Ni et al.,

2019b; Boyou et al., 2019; Yang et al., 2019b; Verma et al., 2019; Li

et al., 2020b; Li et al., 2020c; Rana et al., 2020; Huang et al., 2022),

clay-based (Huang et al., 2018a; Wang et al., 2018; Huang et al.,

2019), metal-based, and composite additives (Madkour et al.,

2016; Swaminathan Ponmanl et al., 2016; Akkouche et al., 2020;

Chang et al., 2020; Paul et al., 2020; Li et al., 2022b; Yang et al.,

2022). The most representative achievements are biomimetic and

amphiphobic additives which solve the drilling problem and

improve the drilling fluid’s performance through innovative

perspectives. They have formed biomimetic wellbore-

strengthening PDFs and amphiphobic high-efficiency PDFs

which are introduced in the following section.

2.5.1 Biomimetic wellbore-strengthening PDF
Bionics studies the structure and property of biological

systems to obtain new design ideas and working mechanisms

for engineering (Guo et al., 2005; Sachsenmeier, 2016). To further

improve the PDF’s wellbore-stabilizing effect, bionics is

introduced into the field of drilling fluid technology. A

biomimetic wellbore-strengthening agent, biomimetic

inhibitor, and biomimetic lubricant are invented, and the

wellbore-strengthening PDF is thus established.

1) Performance of biomimetic additives

PDFs invented in the previous stages use an amino-based

inhibitor, aluminum-based blocking agent, and polymer

microsphere sealing agent to improve wellbore stability in

water-sensitive strata. However, these additives are all

designed to weaken the negative influence of water on the

wellbore rock but never to stabilize the wellbore rock’s space

structure. Research indicates that mussel could cement rocks by

secreting a highly adhesive protein which can bind strongly to

virtually all kinds of inorganic and organic substrates in an

aqueous environment (Yang et al., 2013). Inspired by this

mechanism, the functioning composition in the protein is

found and further introduced as the basis to invent a

biomimetic wellbore-strengthening agent which is a polymer

derivative of amino acid 3,4-dihydroxy-L-phenylalanine. The

biomimetic wellbore-strengthening agent could solidify into

an adhesive which could glue the wellbore rock and elevate

rock strength by improving the rock’s cohesion (Figure 7)

(XuanyangJiang et al., 2013; Guancheng et al., 2015; Jiang

et al., 2015).

The biomimetic inhibitor is a polyamino acid derivative also

extracted from the adhesive mussel protein (Xuan et al., 2015).

Like the small cation, it could embed into clay’s crystal layer, pull

close layer spacing, and alleviate clay swelling. Compared with

the commonly used polyether amine D230, KCl, and 2,3-

epoxypropyltrimethylammonium chloride (EPTAC), the

biomimetic inhibitor has the strongest inhibition on

montmorillonite which decreases its interlayer spacing from

2.55 nm to only 1.39 nm after soaking treatment (Table 5).

Adding a lubricant to the drilling fluid is an effective way to

reduce downhole friction between the drilling fluid and drilling

tool and between the drilling tool and rock. The lubricant is also

able to prevent bit-balling and elevate the ROPwhich has become

an indispensable additive in the HPWDF. In nature, earthworms

adhere to the soil surface by secreting mucus from their body

wall, which could form a smooth film between the soil and their

body and increase the content of extreme pressure elements such

as S and P, and thereby effectively reduce creeping resistance

underground. By mimicking this biological behavior, extracting

TABLE 4 Performance comparison between PERFORMATROL and another HPWDF used in the Middle East.

Competitor HPWDF well PERFORMATROL well

Average ROP/ft/h 26.9 43.7

Fluid volume used/1000/bbl 11 7.5

Days for casing to reach the total depth 15 4
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and utilizing the functional composition of mucus, a biomimetic

lubricant is invented which is made of a small-molecule cationic

phospholipid derivative (Jiang et al., 2018a). It could form steady

lubricating films on the surface of the drilling tool and the surface

of rock through electrostatic attraction. Evaluation shows that a

base with the addition of the biomimetic lubricant has the lowest

reduction rate of the friction coefficient, indicating the best

lubricity performance compared with other high-performance

lubricants (Table 6).

Biomimetic additives have good environmental performance

as their compositions are all nature-based. Evaluation by a

luminescent bacterial experiment indicates that EC50 of the

biomimetic wellbore-strengthening agent, biomimetic

inhibitor, and biomimetic lubricant is 1.94 × 105 mg/L, 3.50 ×

105 mg/L, and 0.81 × 105 mg/L, respectively, indicating that they

are non-toxic.

2) Performance of the biomimetic wellbore-strengthening PDF

The biomimetic wellbore-strengthening PDF consists of a

biomimetic wellbore-strengthening agent, biomimetic inhibitor,

biomimetic lubricant, cellulose fluid loss agent, and bentonite. A

laboratory evaluation indicates that the wellbore-strengthening

PDF has rheological property, inhibition, and lubricity similar to

a typical oil-based drilling fluid (Table 7), and it is bio-degradable

(Table 8).

The biomimetic wellbore-strengthening PDF has been used

in China’s oilfields such as Changqing, Sichuan, Jilin, Jidong, and

Karamay and in countries including Russia, Myanmar, Chad,

Brazil, and Iraq. Field application proves that mudstone wellbore

stability is effectively improved using this technology. The most

successful application is in the Su-53 block of the Sulige tight gas

field. Before 2013, when drilling horizontal sections in a

mudstone stratum, wellbore collapse would occur without

FIGURE 7
Morphology change of shale cuttings immersed in a solution of a biomimetic wellbore-strengthening agent with time. (A) Initial state, (B) one
day later, (C) three days later, and (D) one week later.

TABLE 5 Interlayer spacing of montmorillonite soaked in different
solutions (3% addition).

Solution Interlayer spacing/nm

Pure water 2.55

Biomimetic inhibitor 1.39

Polyether amine D230 1.88

KCl 2.11

EPTAC 1.77
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exception. After the introduction of the wellbore-strengthening

PDF, wellbore collapse was completely avoided, the ROP was

increased by 27%, and the drilling fluid cost was reduced by

35.3% in average.

2.5.2 Amphiphobic high-efficiency PDF
Reservoir damage and wellbore instability caused by capillary

force existed in microcracks, and pores remain improperly solved

for a long time. This problem has become increasingly influential

with the exploration and development of low-permeable shale

gas and sandstone gas in recent years. Under the capillary force,

the reservoir rock will inevitably soak the drilling fluid into its

interior and blocks oil and gas passage. The self-absorption of the

drilling fluid also increases the wellbore collapse risk as the

wellbore rock will soften after long-time immersion. Actually,

although previously invented inhibitors and encapsulators could

decrease wellbore rock hydration to a very low level, the wellbore-

stabilizing effect is still limited because of the inevitable contact

between the drilling fluid and wellbore rock caused by the

capillary force. If the rock surface could be hydrophobic or

even amphiphobic, the capillary force will be inverted, the

drilling fluid’s self-absorption will be avoided, and the

hydration of the wellbore rock will be further decreased to a

great extent (Sheen et al., 2010; Zhang et al., 2011b; Ensikat et al.,

2011; Lee et al., 2013; Li et al., 2016b; Lei et al., 2021a; Lv et al.,

2022; Sun et al., 2022). The problem of reservoir damage and

wellbore instability will thus be solved more completely. Based on

the amphiphobicity theory of the downhole rock surface (Jiang,

2015; Cychosz and Thommes, 2018; Jiang, 2018), a multi-

functional super-amphiphobic additive (MSA) with the effect

of inhibition, reservoir protection, and lubrication is invented,

and the amphiphobic high-efficiency PDF is established.

1) Performance of the MSA

a) Wettability reversal

The MSA is made of nano-SiO2 surface-grafted with

fluorooctyl alkane (Figure 8A) (Jiang et al., 2018b; Ni et al.,

2018; Jiang et al., 2019b). It could be well-dispersed in water, as

shown in Figure 8B, 8C, 8D, without foaming (Chiu et al., 2007;

Jin et al., 2017; Yan et al., 2017). After treatment with the MSA,

the water-phase contact angle of the rock core, metal, and filter

TABLE 6 Lubricity comparison between a biomimetic lubricant and other high-performance lubricants.

Sample Friction coefficient Reduction rate of friction coefficient

aBase 0.54 -

Base+0.5% PF-lube 0.35 35.2%

Base+0.5% CX-300H 0.18 66.7%

Base+0.5% Geruidisi 0.25 53.7%

Base+0.5% biomimetic lubricant 0.12 77.8%

aThe base is 4% bentonite suspension.

TABLE 7 Performance comparison between a biomimetic wellbore-strengthening PDF and typical oil-based drilling fluid after ahot-rolling (density is
2.0 g/cm3).

Drilling fluid
type

AV/
mPa.s

PV/
mPa.s

YP/
Pa

Gel10’’/Gel10’/
Pa/Pa

FLHTHP/
mL

bCutting
recovery/%

Viscosity coefficient of the
filter cake

Wellbore-
strengthening

72 59 13.29 4.5/7 2.4 90.87 0.030

Typical oil-based 80.5 68 12.78 4/6 2.4 97.27 0.026

aThe temperature and time of hot-rolling are 130°C and 16 h, respectively.
bCuttings is shale, and its recovery in pure water is 14.26%.

TABLE 8 Evaluation of the environmental performance of the biomimetic wellbore-strengthening PDF.

EC50/mg/L- aCODCr/mg/L bBOD5/mg/L BOD5/CODCr

3.18×104 1.32 × 105 2.54 × 104 0.192

aCODCr is the abbreviation of the chemical oxygen demand tested using K2Cr2O7 as the oxidant.
bBOD5 is the abbreviation of the biochemical oxygen demand for 5 days.
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cake is increased from less than 20° to more than 150°, and the oil-

phase contact angle of the rock core, metal, and filter cake is

increased from 0° to 150° (Figure 9). Obviously, the MSA could

prevent water-based and even oil-based drilling fluids from self-

absorbing into the rock, thus preventing water-locking, as well as

oil-locking, and decreasing the contact between the drilling fluid

and rock.

b) Inhibition

The MSA has a good inhibitive effect. A soaking experiment

indicates that the swelling height of bentonite in 1% MSA

solution after 25 h is only 1.59 mm, much lower than that in

water and in solutions of KCl, diallyldimethylammonium

chloride (DADMAC), polyether amine D230, and EPTAC

(Figure 10A). The shale cuttings in MSA solution is also the

highest, which is 78.79%, as shown in Figure 10B. It is worth

mentioning that the MSA and biomimetic inhibitor have a

synergistic effect, so better inhibition would be achieved if

they are used together.

c) Reservoir protection performance and lubricity

A general water-based drilling fluid with a formulation of

“3% bentonite+0.5% fluid loss additive+1% blocking

agent+1% starch+20% barite” is used as the base for the

reservoir protection performance evaluation. As shown in

Table 9, the reservoir rock core polluted by the drilling

fluid with the MSA has the highest permeability recovery,

indicating that the MSA has better reservoir protection

performance than the low-permeable agent and film-

forming agent.

As a kind of nanomaterial, the MSA also has a lubricating

effect. For one thing, the MSA could act like “microsphere

FIGURE 8
Molecular structure of the MSA (A) and MSA aqueous solution at 1% (B), 3% (C), and 5% (D) loading.

FIGURE 9
Influence of the MSA on the contact angle of the solid surface: the water-phase contact angle of the rock core before (A) and after treatment
(B), of the metal before (C) and after treatment (D), and of the filter cake before (E) and after treatment (F); oil-phase (paraffin) contact angle of the
rock core before (G) and after treatment (H), of the metal before (I) and after treatment (J), and of the filter cake before (K) and after treatment (L).
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bearing” at the friction interface which decreases the sliding

resistance. For another, the nano-size enables the MSA to

penetrate into micropits of the drilling tool and rock, thus

decreasing the roughness of the friction interface. The

synergistic effect between the MSA and biomimetic lubricant

makes their co-use very effective in friction reduction. A 0.5%

addition of the MSA could decrease the friction coefficient of the

base loaded with the biomimetic lubricant from the original

0.12 to 0.08 (Table 6).

2) Performance of the amphiphobic high-efficiency PDF

The amphiphobic high-efficiency PDF is established on the

core additive MSA and the three biomimetic additives.

Compared with a typical low-density oil-based drilling fluid,

the amphiphobic high-efficiency PDF has lower AV and PV,

higher YP, and equivalent FLHTHP (Table 10). The cuttings

recovery is higher, and the friction coefficient of the filter cake

is lower, indicating that inhibition and lubricity of the

amphiphobic high-efficiency PDF are better than those of the

oil-based drilling fluid. The amphiphobic high-efficiency PDF

also maintains good environmental performance with an EC50 of

3.02 × 104 mg/L and BOD5/CODCr of 0.188.

FIGURE 10
Swelling height of bentonite (A) and shale cuttings recovery (B) in different aqueous solutions.

TABLE 9 Permeability recovery of the low-permeable rock core after polluting with different drilling fluids.

Drilling fluid for pollution Original permeability/10−3μm2 Permeability after pollution/10−3μm2 Permeability
recovery/%

Base 5.47 3.88 70.93

Base +3% low-permeable agent 5.33 4.47 83.86

Base +3% film-forming agent 5.28 4.45 84.28

Base +3% MSA 4.96 4.68 94.35

TABLE 10 Performance comparison (after ahot-rolling) between the amphiphobic high-efficiency PDF and typical oil-based drilling fluid (density is 1.4 g/cm3).

Drilling fluid type AV/
mPa.s

PV/
mPa.s

YP/
Pa

Gel10’’/Gel10’/
Pa/Pa

FLHTHP/
mL

bCuttings
recovery/%

Viscosity coefficient of the
filter cake

Amphiphobic high-
efficiency

26 17 9.20 2/4 2.4 95.61 0.021

Typical oil-based 30 23 7.15 2/4 2.4 93.50 0.025

aThe temperature and time of hot-rolling are 130°C and 16 h, respectively.
bCuttings is shale, and its recovery in pure water is 14.26%.
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The amphiphobic high-efficiency PDF system has been

applied in more than 200 complex structure wells in China’s

oilfields including Changqing, Xinjiang, Huabei, Sichuan, and

Jilin, which solves wellbore collapse, jamming, bit-balling, and

reservoir damage problems effectively. In general, this

technology has elevated the ROP by 32.8%, saved the drilling

fluid cost by 29.3%, and increased single-well yield over 1.5 times

on average.

3 Development tendency of PDF
technology

By reviewing the development history of PDF technology and

combining with global demands, especially China’s strategic

demands of oil and gas exploration and development in the

future, we illustrate the development tendency of PDF

technology by introducing several possible and potential

research directions.

3.1 Intelligent PDF

The drilling fluid with different ingredients has different

functions, and different strata must match suitable drilling

fluids with the required functions so that high-quality drilling

could be achieved. In other words, before designing the drilling

fluid, it is necessary to obtain the correct information about

stratum rock, stratum fluid, stratum pressure, stratum

temperature, etc., and to judge the downhole complexities and

accidents that may occur. However, uncertainty of the stratum

makes it difficult to obtain correct information, especially for

newly discovered gas and oil blocks and difficult resources, which

causes blind designing of the drilling fluid and increasing

occurrence of downhole complexities or accidents. If there is a

drilling fluid that can automatically identify the stratum

condition and automatically adjust its performance based on

the identification to meet the drilling requirement, downhole

complexities and accidents could then be reduced fundamentally,

and the principle of “the design drilling fluid must strictly depend

on the stratum condition”would be changed. Such a drilling fluid

with characteristics of “auto-identification, auto-adjustment, and

auto-adaption” could be deemed as an intelligent drilling fluid.

The intelligent drilling fluid meets the requirement of the

times. As seen from the development process of the petroleum

industry, four technology revolutions in 1920~1930s,

1960~1970s, 1980~1990s, and in the beginning of the 21st

century all sharply increased oil and gas production in the

world. In the near future, under the background of a

surprising development and application of big data and

artificial intelligence, the fifth revolution centering on

“intelligence” may occur very possibly (Fatai, 2011;

Abdelgawad et al., 2018; Nunoo, 2018; Bai et al., 2021; Lei

et al., 2022a; Zhao et al., 2022). As an indispensable

component of intelligent drilling, the intelligent drilling fluid

is bound to become a promising technology development trend.

Future development of the intelligent PDF should lay emphasis

on the stimulus-responsive polymer, especially thermo- (Leblanc

et al., 2015; Xie and Liu, 2017; Divers et al., 2018; Lei et al., 2021b;

Lei et al., 2022b), salt- (Guancheng et al., 2019; Chang et al.,

2020), pressure- (Carpenter, 2017; Mussab et al., 2021),

mechano-, and pH-responsive polymers (Al-Anazi and

Sharma, 2002; Choi et al., 2010; Li et al., 2018a; Chen et al.,

2020), since these kinds of responsiveness are connected tightly

with drilling fluid performance.

3.2 Ecological PDF

Protecting the environment is important during the process

of changing nature for mankind, and it is also important to

ensure the harmonious coexistence between mankind and nature

and the sustainable development of the economy and society.

The storage, use, and post-disposal of the drilling fluid will

potentially cause environmental pollution. Although many

previously developed PDF systems are environment-friendly,

non-toxic, and capable of biodegrading, wastes they generate

are still quite hard to dispose properly. Most harmless treatment

technologies are passive, which often cause incomplete treatment

and secondary pollution (Jiang et al., 2018c). If the drilling fluid

could not reach the level of absolute non-toxic, degrade quickly,

and yield environment-friendly degradation products, the

degradation products could promote the growth of plants as

nutrition or even become a necessary part of native ecological

circulation; thus, the passive treatment could be avoided and the

environment-friendly drilling fluid could be improved to the

ecological drilling fluid. To develop ecological PDF, studies

should lay emphasis on the invention of additives made of

natural polymers and their derivatives including

polysaccharide, poly-amino-acid, protein, and poly-fatty-acid

(Mittal et al., 2014; Li et al., 2015; Panda et al., 2017; Jiang

et al., 2018c; Clark and Santiso, 2018). Finding inspiration from

substances generated in animal and plant metabolism could be an

effective way. Additionally, it is necessary to build a new method

to evaluate the ecological performance of the drilling fluid except

COD and BOD measurements, like investigating the change of

the ecological index of specific zones after the introduction of the

drilling fluid.

3.3 PDF for natural gas hydrate (NGH)

Natural gas hydrate (NGH) is commonly known as

“flammable ice,” which is a clean energy resource producing

almost no residues after combustion. It is estimated that the total

amount of NGH in the world is about twice the total amount of
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traditional oil and gas resources, while China has about four

billion tons of oil-equivalent controllable NGH buried in deep

water (Zhang et al., 2014), which has become an important

potential superseding resource. Although NGH has been

successfully exploited in trials in China, the United States,

Japan, and other countries, there are many scientific and

technological problems to be resolved; therefore, the

commercial mining of NGH cannot be realized yet.

NGH is usually buried in loose mud and sand sediment

0~500 m beneath the bottom of the sea. The stratum stability is

very poor, which requires the drilling fluid to have good

inhibition and excellent wellbore-strengthening performance

to elevate the cementation of loose mud and sand. An

underwater adhesive, like a polyelectrolyte complex adhesive

based on ion bonds and a tannin-based adhesive based on

multiple hydrogen bonds (Lee et al., 2020; Vahdati et al.,

2020), could strongly adhere onto the substrate’s surface in an

aqueous environment. It is promising to utilize an underwater

adhesive to solve the inadequate cementation problem, but it is

still needed to find practical methods to use in the drilling fluid.

In addition, since NGH stores in the deep water, a drilling

challenge also arises from a narrow safe density window,

temperature difference, and strict environmental protection

requirement. The flat-rheology PDF may be the best option

for NGA drilling as the flat-rheological property has been

proved very effective in weakening the fluctuation of the

equivalent circulating density in synthetic drilling fluid cases.

The core additive of the flat-rheology PDF should be a polymer

flat-rheology modifier which could be a temperature-sensitive

polymer capable of changing chain conformation from curled to

extended with temperature increase. Polycaprolactam, poly-N-

isopropylacrylamide, and their derivatives are promising choices

(Xie et al., 2019).

3.4 PDF for deep-layer resources

Oil and gas remained in China are mostly buried in deep layers

with high temperature and high pressure (Cai and Brown, 2017). It

is estimated that China’s deep and ultra-deep resource storage is

67.1 billion tons (oil-equivalent), about 34% of the total. Of all the

deep layer natural gas storage, tight gas and shale gas occupy more

than 29%. The drilling fluid for deep-layer resources must have high

temperature tolerance and high density simultaneously. For

example, the temperature of some reservoirs in the Songliao

Basin and Tarim Basin could reach over 250°C, and the drilling

fluid density needed to balance formation pressure is 2.6 g/cm3 or

even higher. In addition, a thick salt rock layer and salt gypsum layer

are often encountered in deep-layer drilling, additionally requiring a

drilling fluid with excellent anti-pollution ability. However, PDF

technology does not make breakthroughs to overcome these

challenges (Guo et al., 2019). The first problem to solve for the

deep-layer PDF is to maintain good fluidity and control fluid loss

under high temperature and high pressure. Research should

emphasize on the development of a high-temperature polymer

thinner, high-temperature gelator, and high-temperature fluid

loss controller. Particularly, under the consideration that the

high-temperature tolerance of a single organic polymer additive

is limited, the development of high-temperature polymer additives

should lay more focus on the synergistic effect between different

polymers and on the use of inorganic polymers.

4 Conclusion

PDF technology development has undergone stages of

“beginning,” “development,” “improvement,” “re-

development,” and “re-improvement.” Dozens of polymer

additives and PDF systems have been invented and applied

successfully. HPWDFs, biomimetic wellbore-strengthening

PDFs, and amphiphobic high-efficiency PDFs are outstanding

representatives which have elevated the PDF’s performance to an

unprecedented level, even better than a typical oil-based drilling

fluid in some cases. They have avoided downhole complexities

and problems, elevated ROP, saved drilling cost, alleviated

environmental damage, and provided key technology support

for safe, high-efficient, economic, and environmental exploration

and development of unconventional gas resources.

The future development of PDF technology should be guided

by strategic demands of exploration and development of

promising resources. Higher and more special requirements

are elevated by more particular and difficult situations, and

polymer additives and PDFs should be innovated and

improved accordingly. Multi-disciplinary integration of

geology, chemistry, engineering, ecology, bionics, nanoscience,

etc., and the multi-technology assembly of a stimulus-responsive

polymer, intelligent material, natural material, nanomaterial, etc.,

will become the important dependence and practical method,

and thus, revolutionary PDF technologies could be realized soon.
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