58 research outputs found

    Compositional analysis of networked cyber-physical systems: safety and privacy

    Get PDF
    Cyber-physical systems (CPS) are now commonplace in power grids, manufacturing, and embedded medical devices. Failures and attacks on these systems have caused signiļ¬cant social, environmental and ļ¬nancial losses. In this thesis, we develop techniques for proving invariance and privacy properties of cyber-physical systems that could aid the development of more robust and reliable systems. The thesis uses three diļ¬€erent modeling formalisms capturing diļ¬€erent aspects of CPS. Networked dynamical systems are used for modeling (possibly time-delayed) interaction of ordinary diļ¬€erential equations, such as in power system and biological networks. Labeled transition systems are used for modeling discrete communications and updates, such as in sampled data-based control systems. Finally, Markov chains are used for describing distributed cyber-physical systems that rely on randomized algorithms for communication, such as in a crowd-sourced traļ¬ƒc monitoring and routing system. Despite the diļ¬€erences in these formalisms, any model of a CPS can be viewed as a mapping from a parameter space (for example, the set of initial states) to a space of behaviors (also called trajectories or executions). In each formalism, we deļ¬ne a notion of sensitivity that captures the change in trajectories as a function of the change in the parameters. We develop approaches for approximating these sensitivity functions, which in turn are used for analysis of invariance and privacy. For proving invariance, we compute an over-approximation of reach set, which is the set of states visited by any trajectory. We introduce a notion of input-to-state (IS) discrepancy functions for components of large CPS, which roughly captures the sensitivity of the component to its initial state and input. We develop a method for constructing a reduced model of the entire system using the IS discrepancy functions. Then, we show that the trajectory of the reduced model over-approximates the sensitivity of the entire system with respect to the initial states. Using the above results we develop a sound and relatively complete algorithm for compositional invariant veriļ¬cation. In systems where distributed components take actions concurrently, there is a combinatorial explosion in the number of diļ¬€erent action sequences (or traces). We develop a partial order reduction method for computing the reach set for these systems. Our approach uses the observation that some action pairs are approximately independent, such that executing these actions in any order results in states that are close to each other. Hence a (large) set of traces can be partitioned into a (small) set of equivalent classes, where equivalent traces are derived through swapping approximately independent action pairs. We quantify the sensitivity of the system with respect to swapping approximately independent action pairs, which upper-bounds the distance between executions with equivalent traces. Finally, we develop an algorithm for precisely over-approximating the reach set of these systems that only explore a reduced set of traces. In many modern systems that allow users to share data, there exists a tension between improving the global performance and compromising user privacy. We propose a mechanism that guarantees Īµ-diļ¬€erential privacy for the participants, where each participant adds noise to its private data before sharing. The distributions of noise are speciļ¬ed by the sensitivity of the trajectory of agents to the private data. We analyze the trade-oļ¬€ between Īµ-diļ¬€erential privacy and performance, and show that the cost of diļ¬€erential privacy scales quadratically to the privacy level. The thesis illustrates that quantitative bounds on sensitivity can be used for eļ¬€ective reachability analysis, partial order reduction, and in the design of privacy preserving distributed cyber-physical systems

    On simulation based verification of nonlinear nondeterministic hybrid systems

    Get PDF
    Automatic safety verification of hybrid systems typically involves computing precise reach sets of such systems. This computation limits scalability of verification as for many model classes it scales exponentially with the number of continuous variables. First we propose a simulation-based algorithm for computing the reach set of a class of deterministic hybrid system. The algorithm first constructs a cover of the initial set of the hybrid system. Then the reach set of executions from the same cover are overapproximated by simulation traces and tubes around them. Experiments are performed on several benchmark problems including navigation benchmarks, room heating benchmarks, non-linear satellite systems and engine hybrid control systems. The results suggest the algorithm may scale to larger systems. Finally, we present a reachability algorithm that computes precise reach set of dynamical systems AA with non-linear differential inclusions. The algorithm constructs a sequence of shrink concretizations of AA. Then the reach sets of the concretizations are used to construct an overapproximation of the reach set of AA. Soundness and Completeness of both algorithms presented are formally proved

    Low-Frequency Road Noise of Electric Vehicles Based on Measured Road Surface Morphology

    No full text
    In this paper, the noise vibration harshness (NVH) road surface morphology of a test site is scanned to establish a data processing system for the road surface, which can be used to transform the road surface morphology into the road surface excitation required for the road noise simulation analysis. The road surface morphology of the test site is used as the excitation input of the simulation analysis. The results obtained from the simulation analysis are equivalent to the experimental results. Using the actual scanning road surface morphology to simulate the excitation of a vehicle, the noise, as well as the vibration response of the vehicle under the actual road excitation of NVH in the early stage of vehicle development, can be accurately predicted. In the physical prototype stage, the rectification of vehicle road noise and the optimization to provide the needed excitation for the simulation analysis can be done, which will reduce the labor costs of the relevant experiment. Therefore, this method of road noise research has important engineering significance

    Vibration Fracture Analysis and Optimization Design of Ocean Ship Transmission Shaft

    No full text
    • ā€¦
    corecore