5,037 research outputs found
Ferromagnetic Quantum Critical Point in CePdP with Pd Ni Substitution
An investigation of the structural, thermodynamic, and electronic transport
properties of the isoelectronic chemical substitution series
Ce(PdNi)P is reported, where a possible ferromagnetic
quantum critical point is uncovered in the temperature - concentration ()
phase diagram. This behavior results from the simultaneous contraction of the
unit cell volume, which tunes the relative strengths of the Kondo and RKKY
interactions, and the introduction of disorder through alloying. Near the
critical region at 0.7, the rate of contraction of the
unit cell volume strengthens, indicating that the cerium -valence crosses
over from trivalent to a non-integer value. Consistent with this picture, x-ray
absorption spectroscopy measurements reveal that while CePdP has a
purely trivalent cerium -state, CeNiP has a small ( 10 \%)
tetravalent contribution. In a broad region around , there is a
breakdown of Fermi liquid temperature dependences, signaling the influence of
quantum critical fluctuations and disorder effects. Measurements of clean
CePdP furthermore show that applied pressure has a similar initial
effect to alloying on the ferromagnetic order. From these results,
CePdP emerges as a keystone system to test theories such as the
Belitz-Kirkpatrick-Vojta model for ferromagnetic quantum criticality, where
distinct behaviors are expected in the dirty and clean limits.Comment: 9 pages, 8 figure
Real-time ultrasonic assessment of progressive proteoglycan depletion in articular cartilage
2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells
Epstein-Barr virus (EBV) is implicated as an aetiological factor in B lymphomas and nasopharyngeal carcinoma. The mechanisms of cell-free EBV infection of nasopharyngeal epithelial cells remain elusive. EBV glycoprotein B (gB) is the critical fusion protein for infection of both B and epithelial cells, and determines EBV susceptibility of non-B cells. Here we show that neuropilin 1 (NRP1) directly interacts with EBV gB 23-431. Either knockdown of NRP1 or pretreatment of EBV with soluble NRP1 suppresses EBV infection. Upregulation of NRP1 by overexpression or EGF treatment enhances EBV infection. However, NRP2, the homologue of NRP1, impairs EBV infection. EBV enters nasopharyngeal epithelial cells through NRP1-facilitated internalization and fusion, and through macropinocytosis and lipid raft-dependent endocytosis. NRP1 partially mediates EBV-activated EGFR/RAS/ERK signalling, and NRP1-dependent receptor tyrosine kinase (RTK) signalling promotes EBV infection. Taken together, NRP1 is identified as an EBV entry factor that cooperatively activates RTK signalling, which subsequently promotes EBV infection in nasopharyngeal epithelial cells. © 2014 Macmillan Publishers Limited. All rights reserved.published_or_final_versio
Effect of nickel on the microstructure and mechanical property of die-cast Al–Mg–Si–Mn alloy
The effect of nickel on the microstructure and mechanical properties of a die-cast Al–Mg–Si–Mn alloy has been investigated. The results show that the presence of Ni in the alloy promotes the formation of Ni-rich intermetallics. These occur consistently during solidification in the die-cast Al–Mg–Si–Mn alloy across different levels of Ni content. The Ni-rich intermetallics exhibit dendritic morphology during the primary solidification and lamellar morphology during the eutectic solidification stage. Ni was found to be always associated with iron forming AlFeMnSiNi intermetallics, and no Al3Ni intermetallic was observed when Ni concentrations were up to 2.06 wt% in the alloy. Although with different morphologies, the Ni-rich intermetallics were identified as the same AlFeMnSiNi phase bearing a typical composition of Al[100–140](Fe,Mn)[2–7]SiNi[4–9]. With increasing Ni content, the spacing of the α-Al–Mg2Si eutectic phase was enlarged in the Al–Mg–Si–Mn alloy. The addition of Ni to the alloy resulted in a slight increase in the yield strength, but a significant decrease in the elongation. The ultimate tensile strength (UTS) increased slightly from 300 to 320 MPa when a small amount (e.g. 0.16 wt%) of Ni was added to the alloy, but further increase of the Ni content resulted in a decrease of the UTS.The Engineering and Physical Sciences Research Council (EPSRC), Technology Strategy Board (TSB) and Jaguar Land Rover (JLR) in the United Kingdom
The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication
Host-adaptive strategies, such as the E627K substitution in the PB2 protein, are critical for replication of avian influenza A viruses in mammalian hosts. Here we show that mutation PB2-K526R is present in some human H7N9 influenza isolates, in nearly 80% of H5N1 human isolates from Indonesia and, in conjunction with E627K, in almost all seasonal H3N2 viruses since 1970. Polymerase complexes containing PB2-526R derived from H7N9, H5N1 or H3N2 viruses exhibit increased polymerase activity. PB2-526R also enhances viral transcription and replication in cells. In comparison with viruses carrying 627K, H7N9 viruses carrying both 526R and 627K replicate more efficiently in mammalian (but not avian) cells and in mouse lung tissues, and cause greater body weight loss and mortality in infected mice. PB2-K526R interacts with nuclear export protein and our results suggest that it contributes to enhance replication for certain influenza virus subtypes, particularly in combination with 627K.published_or_final_versio
Household secondhand smoke exposure of elementary schoolchildren in Southern Taiwan and factors associated with their confidence in avoiding exposure: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Exposure to household Secondhand Smoke (SHS) poses a major health threat to children after an indoor smoking ban was imposed in Taiwan. This study aimed to assess the household SHS exposure in elementary school children in southern Taiwan and the factors associated with their avoidance of SHS exposure before and after the implementation of Taiwan's new Tobacco Hazards Prevention Act in 2009.</p> <p>Methods</p> <p>In this cross-sectional school-based study, data on household SHS exposure, avoidance of SHS and related variables was obtained from the 2008 and 2009 Control of School-aged Children Smoking Study Survey. A random sample of 52 elementary schools was included. A total of 4450 3-6 graders (aged 8-13) completed the questionnaire. Regression models analyzed factors of children's self-confidence to avoid household SHS exposure.</p> <p>Results</p> <p>Over 50% of children were found to have lived with a family member who smoked in front of them after the new law enacted, and 35% of them were exposed to household SHS more than 4 days a week. Having a positive attitude toward smoking (β = -0.05 to -0.06) and high household SHS exposure (β = -0.34 to -0.47) were significantly associated with a lower avoidance of SHS exposure. Comparing to girls, boys had lower scores in their knowledge of tobacco hazards; and this factor was significantly related to their SHS avoidance (β = 0.13-0.14).</p> <p>Conclusions</p> <p>The intervention program should enhance school children do actively avoid exposure to SHS in home settings, and more importantly, provide tobacco hazard knowledge to male students to avoid exposure to household SHS for themselves. The results also provide further evidence that Tobacco Hazards Prevention Act should perhaps be extended to the family environment in order to protect children from the hazards of household SHS exposure.</p
The uptake of tocopherols by RAW 264.7 macrophages
BACKGROUND: Alpha-Tocopherol and gamma-tocopherol are the two major forms of vitamin E in human plasma and the primary lipid soluble antioxidants. The dietary intake of gamma-tocopherol is generally higher than that of alpha-tocopherol. However, alpha-tocopherol plasma levels are about four fold higher than those of gamma-tocopherol. Among other factors, a preferential cellular uptake of gamma-tocopherol over alpha-tocopherol could contribute to the observed higher plasma alpha-tocopherol levels. In this investigation, we studied the uptake and depletion of both alpha-tocopherol and gamma-tocopherol (separately and together) in cultured RAW 264.7 macrophages. Similar studies were performed with alpha-tocopheryl quinone and gamma-tocopheryl quinone, which are oxidation products of tocopherols. RESULTS: RAW 264.7 macrophages showed a greater uptake of gamma-tocopherol compared to alpha-tocopherol (with uptake being defined as the net difference between tocopherol transported into the cells and loss due to catabolism and/or in vitro oxidation). Surprisingly, we also found that the presence of gamma-tocopherol promoted the cellular uptake of alpha-tocopherol. Mass balance considerations suggest that products other than quinone were formed during the incubation of tocopherols with macrophages. CONCLUSION: Our data suggests that gamma-tocopherol could play a significant role in modulating intracellular antioxidant defence mechanisms. Moreover, we found the presence of gamma-tocopherol dramatically influenced the cellular accumulation of alpha-tocopherol, i.e., gamma-tocopherol promoted the accumulation of alpha-tocopherol. If these results could be extrapolated to in vivo conditions they suggest that gamma-tocopherol is selectively taken up by cells and removed from plasma more rapidly than alpha-tocopherol. This could, in part, contribute to the selective maintenance of alpha-tocopherol in plasma compared to gamma-tocopherol
How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?
This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe
Resolving the backbone tilt of crystalline poly(3-hexylthiophene) with resonant tender X-ray diffraction
The way in which conjugated polymers pack in the solid state strongly affects the performance of polymer-based optoelectronic devices. However, even for the most crystalline conjugated polymers the precise packing of chains within the unit cell is not well established. Here we show that by performing resonant X-ray diffraction experiments at the sulfur K-edge we are able to resolve the tilting of the planar backbones of crystalline poly(3-hexylthiophene) (P3HT) within the unit cell. This approach exploits the anisotropic nature of the X-ray optical properties of conjugated polymers, enabling us to discern between different proposed crystal structures. By comparing our data with simulations based on different orientations, a tilting of the planar conjugated backbone with respect to the side chain stacking direction of 30 ± 5° is determined
Immunodetection of nmt55/p54(nrb) isoforms in human breast cancer
BACKGROUND: We previously identified and characterized a novel 55 kDa nuclear protein, termed nmt55/p54(nrb), whose expression was decreased in a subset of human breast tumors. The objective of this study was to determine if this reduced expression in human breast tumors was attributed to the regulation of mRNA transcription or the presence of altered forms of this protein. RESULTS: Northern blot analysis and ribonuclease protection assay indicated that nmt55/p54(nrb) mRNA is expressed at varying levels in estrogen receptor positive (ER+) and estrogen receptor negative (ER-) human breast tumors suggesting that reduced expression of nmt55/p54(nrb) protein in ER- tumors was not due to transcriptional regulation. To determine if multiple protein isoforms are expressed in breast cancer, we utilized Western blot and immunohistochemical analyses, which revealed the expression of an nmt55/p54(nrb) protein isoform in a subset of ER+ tumors. This subset of ER+ human breast tumors expressed an altered form of nmt55/p54(nrb) that was undetectable with an amino-terminal specific antibody suggesting that this isoform contains alterations or modifications within the amino terminal domain. CONCLUSIONS: Our study indicates that nmt55/p54(nrb) protein is post-transcriptionally regulated in human breast tumors leading to reduced expression in ER- tumors and the expression of an amino terminal altered isoform in a subset of ER+ tumors. The potential involvement of nmt55/p54(nrb) in RNA binding and pre-mRNA splicing may be important for normal cell growth and function; thus, loss or alteration of protein structure may contribute to tumor growth and progression
- …