3,285 research outputs found

    The effect of nutrient limitation on bacterial wax ester production

    Get PDF
    Nutrient limitation is widely employed to alter the behaviour of micro-organisms. Here, the impact of nitrogen and, for the first time, phosphate limitation is investigated on the production of bacterial storage lipids; specifically wax esters, a class of storage lipids of industrial interest, by the bacterium Acinetobacter baylyi ADP1 grown on the low-cost substrate acetate. Studies determined the absolute and temporal effects of nutrient limitation and identified a maximum wax titre of 132 mg/L and content of 17 % of biomass. A 4-fold increase in wax production was achievable by manipulating carbon: phosphate ratio. Multivariable analysis identified a novel interaction effect between carbon: nitrogen and carbon: phosphate ratios on wax production. Extreme phosphate starvation shifted the dominant lipid class from wax esters to triacylglycerols, the first report of the potential of phosphate limitation to alter the type of lipid generated. These findings offer valuable insights for future microbial bioproduction studies

    Anaerobic co-digestion of Euphorbia tirucalli with pig blood for volatile fatty acid production

    Get PDF
    Acidogenic fermentation of biomass to produce volatile fatty acids provides a renewable pathway to industrial chemicals ordinarily derived from petrochemicals. Crassulacean acid metabolism plants such as Euphorbia tirucalli are cultivable on marginal land and offer promising feedstocks for this purpose. This study investigated how the refining of E. tirucalli biomass to fatty acids could be augmented with a high-protein co-substrate, pig blood. Blood mono-digestions provided the highest titres of total fatty acid (up to 38 ± 2 g/L), while at high substrate concentrations, acetic acid was maximal in co-digestions. 75 % blood with 25 % E. tirucalli produced acetic acid titres 40.8 % (p < 0.001) and 30.8 % (p = 0.001) higher than those in mono-digestions of E. tirucalli and blood, respectively. Where acetate is the desired product, inclusion of blood as a co-substrate offers significant benefit for Euphorbia biorefining

    Characterization of high exopolysaccharide-producing Lactobacillus strains isolated from mustard pickles for potential probiotic applications

    Get PDF
    The aim of this study was to characterize high exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) isolated from mustard pickles in Taiwan for potential probiotic applications. Among 39 collected LAB strains, four most productive EPS-producing strains were selected for further analysis. Comparative analyses of 16S rDNA genes rpoA and pheS sequences demonstrated that these strains were members of Lactobacillus plantarum-group (LPG). NCD 2, NLD 4, SLC 13, and NLD 16 showed survival rates of 95.83% &plusmn; 0.49%, 95.07% &plusmn; 0.64%, 105.84% &plusmn; 0.82%, and 99.65% &plusmn; 0.31% under simulated gastrointestinal conditions, respectively. No cytotoxic effects on macrophage RAW 264.7 cells were observed when they were treated with a low dose (1 &mu;g/ml) of stimulants extracted from the tested LAB strains. The production of nitric oxide in RAW 264.7 cells incubated with various LAB stimulants showed a dose-dependent increase. Among the four strains, SLC 13 showed higher inhibitory activity on growth of Enterococcus faecalis (BCRC 12302) and Yersinia enterocolitica (BCRC 10807). NLD 4 showed strong inhibitory activity against Escherichia coli O157:H7 (ATCC 43894) as compared with the other three strains. In summary, our results suggest that Lactobacillus pentosus SLC 13 may be a good candidate for probiotic applications and for development of antibacterial compounds. [Int Microbiol 20(2):75-84 (2017)]Keywords: Lactobacillus spp. &middot; exopolysaccharide &middot; probiotic

    The Application of the Multiple Points of a Mold Function of UG MoldWizard in the Design of Cutting Compressor

    Full text link
    In recent years, mold industry develops rapidly. The design and manufacture of mold have become an important symbol to measure the level of a country#39s manufacturing industry. Difficult point in the design of the cutting compressor for recycling plastic bottles lies in cutting and compressing plastic bottles at the same time. Use UG MoldWizard to design the working process of injection mold. Design and manufacture the U-lower plastic mold with the aid of a computer. Make optimal design plan of the U-lower plastic in the cutting compressor

    International R&D Funding and Patent Collateral in an R&D-Growth Model

    Get PDF
    This paper develops an R&D-based growth model featuring international R&D funding and patent collateral. It then uses the model to examine how the international borrowing interest rate and the fraction of patent collateral will affect innovations and economic growth

    IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.

    No full text
    CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen

    Nonlinearity in the Dark: Broadband Terahertz Generation with Extremely High Efficiency

    Get PDF
    Plasmonic metamaterials and metasurfaces offer new opportunities in developing high performance terahertz emitters and detectors beyond the limitations of conventional nonlinear materials. However, simple meta-atoms for second-order nonlinear applications encounter fundamental trade-offs in the necessary symmetry breaking and local-field enhancement due to radiation damping that is inherent to the operating resonant mode and cannot be controlled separately. Here we present a novel concept that eliminates this restriction obstructing the improvement of terahertz generation efficiency in nonlinear metasurfaces based on metallic nanoresonators. This is achieved by combining a resonant dark-state metasurface, which locally drives nonlinear nanoresonators in the near field, with a specific spatial symmetry that enables destructive interference of the radiating linear moments of the nanoresonators, and perfect absorption via simultaneous electric and magnetic critical coupling of the pump radiation to the dark mode. Our proposal allows eliminating linear radiation damping, while maintaining constructive interference and effective radiation of the nonlinear components. We numerically demonstrate a giant second-order nonlinear susceptibility ∼10−11 m=V, a one order improvement compared with the previously reported split-ring-resonator metasurface, and correspondingly, a 2 orders of magnitude enhanced terahertz energy extraction should be expected with our configuration under the same conditions. Our study offers a paradigm of high efficiency tunable nonlinear metadevices and paves the way to revolutionary terahertz technologies and optoelectronic nanocircuitry

    Flow Changes after Endovascular Treatment of a Wide-Neck Anterior Communicating Artery Aneurysm by using X-configured Kissing Stents (Cross-Kissing Stents) Technique

    Get PDF
    Endovascular treatment for a wide-neck anterior communicating artery (AcomA) aneurysm remains technically challenging. Stent-assisted embolization has been proposed as an alternative of treatment of complex aneurysms. The X-configuration double-stent-assisted technique was used to achieve successful coiling of wide-neck AcomA aneurysm. Implanted stent can alter intra-arterial flow. Follow-up angiograms 4 months later showed flow changes due to used X-technique of stents implantation and filling of the anterior cerebral artery from the opposite internal carotid artery

    Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes

    Get PDF
    Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
    corecore