75,871 research outputs found

    Large-Eddy Simulations of Flow and Heat Transfer in Complex Three-Dimensional Multilouvered Fins

    Get PDF
    The paper describes the computational procedure and results from large-eddy simulations in a complex three-dimensional louver geometry. The three-dimensionality in the louver geometry occurs along the height of the fin, where the angled louver transitions to the flat landing and joins with the tube surface. The transition region is characterized by a swept leading edge and decreasing flow area between louvers. Preliminary results show a high energy compact vortex jet forming in this region. The jet forms in the vicinity of the louver junction with the flat landing and is drawn under the louver in the transition region. Its interaction with the surface of the louver produces vorticity of the opposite sign, which aids in augmenting heat transfer on the louver surface. The top surface of the louver in the transition region experiences large velocities in the vicinity of the surface and exhibits higher heat transfer coefficients than the bottom surface.Air Conditioning and Refrigeration Project 9

    A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme

    Get PDF
    A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well

    Remark on approximation in the calculation of the primordial spectrum generated during inflation

    Get PDF
    We re-examine approximations in the analytical calculation of the primordial spectrum of cosmological perturbation produced during inflation. Taking two inflation models (chaotic inflation and natural inflation) as examples, we numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR

    Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems

    Full text link
    We study the quantum-jump-based feedback control on the entanglement shared between two qubits with one of them subject to decoherence, while the other qubit is under the control. This situation is very relevant to a quantum system consisting of nuclear and electron spins in solid states. The possibility to prolong the coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit subject directly to decoherence

    Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems

    Get PDF
    We have fabricated doubly clamped beams from GaAs/AlGaAs quantum-well heterostructures containing a high-mobility two-dimensional electron gas (2DEG). Applying an rf drive to in-plane side gates excites the beam's mechanical resonance through a dipole–dipole mechanism. Sensitive high-frequency displacement transduction is achieved by measuring the ac emf developed across the 2DEG in the presence of a constant dc sense current. The high mobility of the incorporated 2DEG provides low-noise, low-power, and high-gain electromechanical displacement sensing through combined piezoelectric and piezoresistive mechanisms
    • …
    corecore