107,442 research outputs found

    Revised Huang-Yang multipolar pseudopotential

    Full text link
    A number of authors have recently pointed out inconsistencies of results obtained with the Huang-Yang multipolar pseudo-potential for low-energy scattering [K. Huang and K. C. Yang, Phys. Rev. A, v 105, 767 (1957); later revised in K. Huang, ``Statistical Mechanics'', (Wiley, New York, 1963)]. The conceptual validity of their original derivation has been questioned. Here I show that these inconsistencies are rather due to an {\em algebraic} mistake made by Huang and Yang. With the corrected error, I present the revised version of the multipolar pseudo-potential

    Effect of humidity on transonic flow

    Get PDF
    An experimental investigation of the effects of humidity-induced condensation on shock/boundary-layer interaction has been conducted in a transonic wind-tunnel test. The test geometry considered was a wall-mounted bump model inserted in the test section of the wind tunnel. The formation of a λ-shape condensation shock wave was shown from schlieren visualization and resulted in a forward movement of the shock wave, reduced shock wave strength, and reduced separation. Empirical correlations of the shock wave strength and humidity/dew point temperature were established. For humidity levels below 0.15 or a dew point temperature of 268 K, the effect of humidity was negligible. The unsteady pressure measurements showed that if a condensation shock wave formed and interacted with a main shock wave, the flow becomes unsteady with periodic flow oscillations occurring at 720 Hz

    Single-Walled Carbon Nanotubes as Shadow Masks for Nanogap Fabrication

    Full text link
    We describe a technique for fabricating nanometer-scale gaps in Pt wires on insulating substrates, using individual single-walled carbon nanotubes as shadow masks during metal deposition. More than 80% of the devices display current-voltage dependencies characteristic of direct electron tunneling. Fits to the current-voltage data yield gap widths in the 0.8-2.3 nm range for these devices, dimensions that are well suited for single-molecule transport measurements

    Strategies for protecting intellectual property when using CUDA applications on graphics processing units

    Get PDF
    Recent advances in the massively parallel computational abilities of graphical processing units (GPUs) have increased their use for general purpose computation, as companies look to take advantage of big data processing techniques. This has given rise to the potential for malicious software targeting GPUs, which is of interest to forensic investigators examining the operation of software. The ability to carry out reverse-engineering of software is of great importance within the security and forensics elds, particularly when investigating malicious software or carrying out forensic analysis following a successful security breach. Due to the complexity of the Nvidia CUDA (Compute Uni ed Device Architecture) framework, it is not clear how best to approach the reverse engineering of a piece of CUDA software. We carry out a review of the di erent binary output formats which may be encountered from the CUDA compiler, and their implications on reverse engineering. We then demonstrate the process of carrying out disassembly of an example CUDA application, to establish the various techniques available to forensic investigators carrying out black-box disassembly and reverse engineering of CUDA binaries. We show that the Nvidia compiler, using default settings, leaks useful information. Finally, we demonstrate techniques to better protect intellectual property in CUDA algorithm implementations from reverse engineering

    Nuclear Chemical and Mechanical Instability and the Liquid-Gas Phase Transition in Nuclei

    Full text link
    The thermodynamic properties of nuclei are studied in a mean field model using a Skryme interaction. Properties of two component systems are investigated over the complete range of proton fraction from a system of pure neutrons to a system of only protons. Besides volume, symmetry, and Coulomb effects we also include momentum or velocity dependent forces. Applications of the results developed are then given which include nuclear mechanical and chemical instability and an associated liquid/gas phase transition in two component systems. The velocity dependence leads to further changes in the coexistence curve and nuclear mechanical and chemical instability curves.Comment: 21 pages, 9 figures, Results are changed due to error in progra

    Nowhere minimal CR submanifolds and Levi-flat hypersurfaces

    Full text link
    A local uniqueness property of holomorphic functions on real-analytic nowhere minimal CR submanifolds of higher codimension is investigated. A sufficient condition called almost minimality is given and studied. A weaker necessary condition, being contained a possibly singular real-analytic Levi-flat hypersurface is studied and characterized. This question is completely resolved for algebraic submanifolds of codimension 2 and a sufficient condition for noncontainment is given for non algebraic submanifolds. As a consequence, an example of a submanifold of codimension 2, not biholomorphically equivalent to an algebraic one, is given. We also investigate the structure of singularities of Levi-flat hypersurfaces.Comment: 21 pages; conjecture 2.8 was removed in proof; to appear in J. Geom. Ana

    Discovery of {\gamma}-ray pulsation and X-ray emission from the black widow pulsar PSR J2051-0827

    Full text link
    We report the discovery of pulsed {\gamma}-ray emission and X-ray emission from the black widow millisecond pulsar PSR J2051-0827 by using the data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope and the Advanced CCD Imaging Spectrometer array (ACIS-S) on the Chandra X-ray Observatory. Using 3 years of LAT data, PSR J2051-0827 is clearly detected in {\gamma}-ray with a signicance of \sim 8{\sigma} in the 0.2 - 20 GeV band. The 200 MeV - 20 GeV {\gamma}-ray spectrum of PSR J2051-0827 can be modeled by a simple power- law with a photon index of 2.46 \pm 0.15. Significant (\sim 5{\sigma}) {\gamma}-ray pulsations at the radio period were detected. PSR J2051-0827 was also detected in soft (0.3-7 keV) X-ray with Chandra. By comparing the observed {\gamma}-rays and X-rays with theoretical models, we suggest that the {\gamma}-ray emission is from the outer gap while the X-rays can be from intra-binary shock and pulsar magnetospheric synchrotron emissions.Comment: 10 pages, 4 figures, accepted by ApJ on Jan 28, 201

    Discovery of gamma-ray emission from the supernova remnant Kes 17 with Fermi Large Area Telescope

    Get PDF
    We report the discovery of GeV emission at the position of supernova remnant Kes 17 by using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance of ~12 sigma in the 1 - 20 GeV range. Moreover, a number of gamma-ray sources were detected in its vicinity. The gamma-ray spectrum of Kes 17 can be well described by a simple power-law with a photon index of ~ 2.4. Together with the multi-wavelength evidence for its interactions with the nearby molecular cloud, the gamma-ray detection suggests that Kes 17 is a candidate acceleration site for cosmic-rays.Comment: 13 pages, 3 figures, 1 table, accepted for publication in ApJ Lette
    corecore