148,998 research outputs found

    Recursive Integral Method with Cayley Transformation

    Full text link
    Recently, a non-classical eigenvalue solver, called RIM, was proposed to compute (all) eigenvalues in a region on the complex plane. Without solving any eigenvalue problem, it tests if a region contains eigenvalues using an approximate spectral projection. Regions that contain eigenvalues are subdivided and tested recursively until eigenvalues are isolated with a specified precision. This makes RIM an eigensolver distinct from all existing methods. Furthermore, it requires no a priori spectral information. In this paper, we propose an improved version of {\bf RIM} for non-Hermitian eigenvalue problems. Using Cayley transformation and Arnoldi's method, the computation cost is reduced significantly. Effectiveness and efficiency of the new method are demonstrated by numerical examples and compared with 'eigs' in Matlab

    Study of a homotopy continuation method for early orbit determination with the Tracking and Data Relay Satellite System (TDRSS)

    Get PDF
    A recent mathematical technique for solving systems of equations is applied in a very general way to the orbit determination problem. The study of this technique, the homotopy continuation method, was motivated by the possible need to perform early orbit determination with the Tracking and Data Relay Satellite System (TDRSS), using range and Doppler tracking alone. Basically, a set of six tracking observations is continuously transformed from a set with known solution to the given set of observations with unknown solutions, and the corresponding orbit state vector is followed from the a priori estimate to the solutions. A numerical algorithm for following the state vector is developed and described in detail. Numerical examples using both real and simulated TDRSS tracking are given. A prototype early orbit determination algorithm for possible use in TDRSS orbit operations was extensively tested, and the results are described. Preliminary studies of two extensions of the method are discussed: generalization to a least-squares formulation and generalization to an exhaustive global method

    Integrated parylene-cabled silicon probes for neural prosthetics

    Get PDF
    Recent advances in the field of neural prosthetics have demonstrated the thought control of a computer cursor. This capability relies primarily on electrode array surgically implanted into the brain as an acquisition source of neural activity. Various technologies have been developed for signal extraction; however most suffer from either fragile electrode shanks and bulky cables or inefficient use of surgical site areas. Here we present a design and initial testing results from high electrode density, silicon based arrays system with an integrated parylene cable. The greatly reduced flexible rigidity of the parylene cable is believed to relief possible mechanical damages due to relative motion between a brain and its skull

    Fatigue failure of materials under broad band random vibrations

    Get PDF
    The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation

    RTP control protocol (RTCP) extended report (XR) block for independent reporting of burst/fgp discard metrics

    Get PDF
    This document defines an RTP Control Protocol (RTCP) Extended Report (XR) block that allows the reporting of burst/gap discard metrics independently of the burst/gap loss metrics for use in a range of RTP applications

    SENS-5D trajectory and wind-sensitivity calculations for unguided rockets

    Get PDF
    A computational procedure is described which numerically integrates the equations of motion of an unguided rocket. Three translational and two angular (roll discarded) degrees of freedom are integrated through the final burnout; and then, through impact, only three translational motions are considered. Input to the routine is: initial time, altitude and velocity, vehicle characteristics, and other defined options. Input format has a wide range of flexibility for special calculations. Output is geared mainly to the wind-weighting procedure, and includes summary of trajectory at burnout, apogee and impact, summary of spent-stage trajectories, detailed position and vehicle data, unit-wind effects for head, tail and cross winds, coriolis deflections, range derivative, and the sensitivity curves (the so called F(Z) and DF(Z) curves). The numerical integration procedure is a fourth-order, modified Adams-Bashforth Predictor-Corrector method. This method is supplemented by a fourth-order Runge-Kutta method to start the integration at t=0 and whenever error criteria demand a change in step size

    PP-wave String Interactions from String Bit Model

    Full text link
    We construct the string states OpJ>J|O_{p}^J>_J, OqJ1>J1J2|O_{q}^{J_1}>_{{J_1}{J_2}} and O0J1J2>J1J2|O_{0}^{J_{1}J_{2}}>_{{J_1}{J_2}} in the Hilbert space of the quantum mechanical orbifold model so as to calculate the three point functions and the matrix elements of the light-cone Hamiltonian from the interacting string bit model. With these string states we show that the three point functions and the matrix elements of the Hamiltonian derived from the interacting string bit model up to g22g^{2}_2 order precisely match with those computed from the perturbative SYM theory in BMN limit.Comment: 20 pages, no figure, LaTeX, some changes made and references adde

    Theoretical study of nuclear spin polarization and depolarization in self-assembled quantum dots

    Full text link
    We investigate how the strain-induced nuclear quadrupole interaction influences the degree of nuclear spin polarization in self-assembled quantum dots. Our calculation shows that the achievable nuclear spin polarization in In_{x}Ga_{1-x}As quantum dots is related to the concentration of indium and the resulting strain distribution in the dots. The interplay between the nuclear quadrupole interaction and Zeeman splitting leads to interesting features in the magnetic field dependence of the nuclear spin polarization. Our results are in qualitative agreement with measured nuclear spin polarization by various experimental groups.Comment: 14 pages, 13 figures, submitted to Physical Review
    corecore