120,805 research outputs found

    Path analysis for process troubleshooting

    Get PDF

    Analysis of the Movement of Chlamydomonas Flagella: The Function of the Radial-spoke System Is Revealed by Comparison of Wild-type and Mutant Flagella

    Get PDF
    The mutation uni-1 gives rise to uniflagellate Chlamydomonas cells which rotate around a fixed point in the microscope field, so that the flagellar bending pattern can be photographed easily . This has allowed us to make a detailed analysis of the wild-type flagellar bending pattern and the bending patterns of flagella on several mutant strains. Cells containing uni-1, and recombinants of uni-1 with the suppressor mutations, sup(_pf)-1 and sup(_pf)-3, show the typical asymmetric bending pattern associated with forward swimming in Chlamydomonas, although sup(_pf)-1 flagella have about one-half the normal beat frequency, apparently as the result of defective function of the outer dynein arms. The pf-17 mutation has been shown to produce nonmotile flagella in which radial spoke heads and five characteristic axonemal polypeptides are missing. Recombinants containing pf-17 and either sup(_pf)-1 or sup(_pf)-3 have motile flagella, but still lack radial-spoke heads and the associated polypeptides . The flagellar bending pattern of these recombinants lacking radial-spoke heads is a nearly symmetric, large amplitude pattern which is quite unlike the wild-type pattern . However, the presence of an intact radial-spoke system is not required to convert active sliding into bending and is not required for bend initiation and bend propagation, since all of these processes are active in the sup(_pf) pf-17 recombinants. The function of the radial-spoke system appears to be to convert the symmetric bending pattern displayed by these recombinants into the asymmetric bending pattern required for efficient swimming, by inhibiting the development of reverse bends during the recovery phase of the bending cycle

    Remark on approximation in the calculation of the primordial spectrum generated during inflation

    Get PDF
    We re-examine approximations in the analytical calculation of the primordial spectrum of cosmological perturbation produced during inflation. Taking two inflation models (chaotic inflation and natural inflation) as examples, we numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR

    Systemic risk in dynamical networks with stochastic failure criterion

    Full text link
    Complex non-linear interactions between banks and assets we model by two time-dependent Erd\H{o}s Renyi network models where each node, representing bank, can invest either to a single asset (model I) or multiple assets (model II). We use dynamical network approach to evaluate the collective financial failure---systemic risk---quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided on sub-periods, where within each sub-period banks may contiguously fail due to links to either (i) assets or (ii) other banks, controlled by two parameters, probability of internal failure pp and threshold ThT_h ("solvency" parameter). The systemic risk non-linearly increases with pp and decreases with average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller ThT_h), the smaller the systemic risk---for some ThT_h values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic (ii) controlled by probability p2p_2---a condition for the bank to be solvent (active) is stochastic---the systemic risk decreases with decreasing p2p_2. We analyse asset allocation for the U.S. banks.Comment: 7 pages, 7 figure

    Fully Coherent X-ray Pulses from a Regenerative Amplifier Free Electron Laser

    Full text link
    We propose and analyze a novel regenerative amplifier free electron laser (FEL) to produce fully coherent x-ray pulses. The method makes use of narrow-bandwidth Bragg crystals to form an x-ray feedback loop around a relatively short undulator. Self-amplified spontaneous emission (SASE) from the leading electron bunch in a bunch train is spectrally filtered by the Bragg reflectors and is brought back to the beginning of the undulator to interact repeatedly with subsequent bunches in the bunch train. The FEL interaction with these short bunches not only amplifies the radiation intensity but also broadens its spectrum, allowing for effective transmission of the x-rays outside the crystal bandwidth. The spectral brightness of these x-ray pulses is about two to three orders of magnitude higher than that from a single-pass SASE FEL.Comment: 11 pages, 6 figure

    Limits of sympathetic cooling of fermions: The role of the heat capacity of the coolant

    Full text link
    The sympathetic cooling of an initially degenerate Fermi gas by either an ideal Bose gas below TcT_c or an ideal Boltzmann gas is investigated. It is shown that the efficiency of cooling by a Bose gas below TcT_c is by no means reduced when its heat capacity becomes much less than that of the Fermi gas, where efficiency is measured by the decrease in the temperature of the Fermi gas per number of particles evaporated from the coolant. This contradicts the intuitive idea that an efficient coolant must have a large heat capacity. In contrast, for a Boltzmann gas a minimal value of the ratio of the heat capacities is indeed necessary to achieve T=0 and all of the particles must be evaporated.Comment: 5 pages, 3 figure

    Reduced magnetohydrodynamic theory of oblique plasmoid instabilities

    Full text link
    The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by \vc{B}_o = B_{po} \tanh (x/\lambda) \hat{y} + B_{zo} \hat{z}, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the polodial field Byo(x)=Bpotanh(x/λ)B_{yo} (x) = B_{po} \tanh (x/\lambda), which is the only resonant surface in 2D or in the absence of a guide field. Here BpoB_{po} is the asymptotic value of the equilibrium poloidal field, BzoB_{zo} is the constant equilibrium guide field, and λ\lambda is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θarctan(kz/ky)\theta \equiv \arctan(k_z/k_y). The resonant surface location for angle θ\theta is x_s = - \lambda \arctanh (\tan \theta B_{zo}/B_{po}), and the existence of a resonant surface requires θ<arctan(Bpo/Bzo)|\theta| < \arctan (B_{po} / B_{zo}). The most unstable angle is oblique, i.e. θ0\theta \neq 0 and xs0x_s \neq 0, in the constant-ψ\psi regime, but parallel, i.e. θ=0\theta = 0 and xs=0x_s = 0, in the nonconstant-ψ\psi regime. For a fixed angle of obliquity, the most unstable wavenumber lies at the intersection of the constant-ψ\psi and nonconstant-ψ\psi regimes. The growth rate of this mode is γmax/ΓoSL1/4(1μ4)1/2\gamma_{\textrm{max}}/\Gamma_o \simeq S_L^{1/4} (1-\mu^4)^{1/2}, in which Γo=VA/L\Gamma_o = V_A/L, VAV_A is the Alfv\'{e}n speed, LL is the current sheet length, and SLS_L is the Lundquist number. The number of plasmoids scales as NSL3/8(1μ2)1/4(1+μ2)3/4N \sim S_L^{3/8} (1-\mu^2)^{-1/4} (1 + \mu^2)^{3/4}.Comment: 9 pages, 8 figures, to be published in Physics of Plasma

    Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe

    Get PDF
    There is increasing evidence that conventional cold dark matter (CDM) models lead to conflicts between observations and numerical simulations of dark matter halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is strongly self-interacting, then the conflicts disappear. However, the assumption of strong self-interaction would rule out the favored candidates for CDM, namely weakly interacting massive particles (WIMPs), such as the neutralino. In this paper we propose a mechanism of non-thermal production of WIMPs and study its implications on the power spectrum. We find that the non-vanishing velocity of the WIMPs suppresses the power spectrum on small scales compared to what it obtained in the conventional CDM model. Our results show that, in this context, WIMPs as candidates for dark matter can work well both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
    corecore