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Abstract: In this paper, a model-free data-driven approach to process troubleshooting
is proposed. The method is simple and can handle both univariate and multivariate
processes. The only information needed for such an analysis is the data. The objective
is to identify possible source of variability/oscillation from all interacting variables.
To achieve this objective, a model-free method known as path analysis is used. In this
paper, we will summarize the theory and algorithms developed for such an analysis.
An industrial case study is presented to demonstrate the feasibility of the proposed
method.
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1. INTRODUCTION

If a control loop has no potential to improve
performance by tuning the controller, then one
obvious choice is to trace the source of the upset
and reduce the disturbances/oscillations in the
source. One therefore has to search for, among
many loops which interact with the loop of con-
cern, the source of the disturbances/oscillations.
This can be a forbidding task for a large scale
process without an appropriate analysis tool. The
method of path analysis was developed by the
geneticist to explain causal relations in population
genetics (Johnson and Wichern, 1982). The goal of
path analysis is to provide plausible explanations
of observed correlations by constructing models of
cause-and-effect relations variables. In this study
we will explore this method further and develop
it for process troubleshooting applications.

2. PATH DIAGRAM

2.1 What is path analysis?

The concept of path analysis is explained in this
subsection according to (Johnson and Wichern,
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1982). For a more comprehensive discussion on
the path analysis method, readers are referred
to (Johnson and Wichern, 1982) and references
therein.

It is well known that a significant correlation
between two variables does not imply a causal
relationship. For example, the variation in both
variables may be introduced by a third variable.
Or one of the two variables may affect the second
variable through a third variable or many other
variables.

When one variable X1 precedes another variable
X2 in time, it may be postulated that X1 causes
X2. The relation can be represented, in the path
analysis, as X1 → X2. Taking into account the
error ε2, the path diagram may be presented as

X2

↗ ↖
X1 ε2

The diagram may be written as a linear model

X2 = β0 + β1X1 + ε2

where X1 is considered to be a causal variable
that is not influenced by other variables. The
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notion of a causal relation between X1 and X2

requires that all other possible causal factors
be ruled out. Statistically, we specify that X1

and ε2 be uncorrelated, where ε2 represents the
collective effect of all unmeasured variables that
could conceivably influence X1 and X2.

To offset the influence of variable units, the re-
gression equation is written in the standardized
form as

X2 − µ2√
σ22

= β1

√
σ11

σ22
(
X1 − µ1√

σ11
) +

√
σεε

σ22

ε2√
σεε

or written in a compact form:

Z2 = p21Z1 + p2εε

Note that all variables including the error ε2 now
have the same variance of 1 and mean of 0. The
error ε also has a coefficient. The parameters, p,
in the standardized model, are defined as path
coefficients.

Mathematically, it is equally logical to postulate
that X2 causes X1 or to postulate a third model
that includes a common factor. In the latter case
the correlation between X1 and X2 is spurious and
not a cause-effect correlation. The path diagram
is now

ε2

↘
X2

↗
F3

↘
X1

↗
ε1

where we again allow for errors in the relation-
ship. In terms of standardized variables, the lin-
ear model implied by the path diagram above
becomes

Z1 = p13F3 + p1ε1ε1

Z2 = p23F3 + p1ε2ε2

where the standardized errors ε1 and ε2 are un-
correlated with each other and with F3.

A distinction is made between variables that are
not influenced by other variables in the system
(exogenous/input variables) and those variables
that are affected by others (endogenous/output
variables). With each of the latter output vari-
ables is associated a residual. Certain conventions
govern the drawing of a path diagram. Directed
arrows represent a path. The path diagram is
constructed as follows.

(1) A straight arrow is drawn to each output
(endogenous) variable from each of its source.

Fig. 1. An example of path analysis

(2) A straight arrow is also drawn to each output
variable from its residual.

(3) A curved, double-headed arrow is drawn be-
tween each pair of input (exogenous) vari-
ables thought to have nonzero correlation.

The above procedure is illustrated in Fig. 1.

To calculate the coefficients for the path diagram,
we use standardized variable, i.e. all variables have
mean 0 and variance 1. If a regression model of
original variables is given by

Y = β0 + β1X1 + β2X2 + · · ·+ βrXr + ε

Then a (multivariate) regression model of the
normalized variables can be constructed as

Y − µY√
σY Y

= β1

√
σ11√
σY Y

(
X1 − µ1√

σ11
) + β2

√
σ22√
σY Y

(
X2 − µ2√

σ22
)+

· · ·+ βr

√
σrr√
σY Y

(
Xr − µr√

σrr
) +

√
σεε√
σY Y

(
ε√
σεε

)

or

Ys = pY 1Z1 + pY 2Z2 + · · ·+ pY rZr + pY εεs(1)

The coefficients, pY k = βk
√

σkk/
√

σY Y and pY ε =√
σεε/

√
σY Y are the path coefficients or the direct

effects.

An example of the path diagram is shown in
Fig. 1, where pY 1, pY 2, pY 3, pY ε are the path co-
efficients (direct effect coefficients); ρij is the cor-
relation coefficient between Xi and Xj .

2.2 Path analysis

It is interesting to see that the correlation coeffi-
cient between Y and Xi can be constructed from
the path diagram. This is shown below.

ρY Xi = Corr(Y, Xi) = Cov(Ys, Zi)



Using (1),

Cov(Ys, Zi) = Cov(
r∑

j=1

pY jZj, Zi) =
r∑

j=1

pY iρij

which is weighted sum of the path coefficients.
This correlation may be interpreted as the total
effects from Xi to Y through all possible paths,
and therefore this total effect is nothing but the
correlation coefficient between Xi and Y . The
difference between the direct effect and correlation
coefficient is evident through this analysis.

Another interesting fact is the variance decompo-
sition. Note that the following equation exists:

1 = V ar(Ys) = V ar(
r∑

i=1

pY iZi + pY εε)

=
r∑

i=1

r∑
k=1

pY iρikpY k + p2
Y ε

=
r∑

i=1

p2
Y i + 2

r∑
i=1

r−1∑
k=i+1

pY iρikpY k + p2
Y ε

= vd + vi + vu

This equation may be interpreted as

(Total variance of the output)

= (Contribution from direct effects)

+(Contribution from indirect effects)

+(Contribution from unknown source)

Two useful indices can be defined:

• Completeness index of the selected variables
is defined as γc = vd + vi which is bounded
from 0 to 1. γc = 0 indicates that the se-
lected input (independent/exogenous) vari-
ables have no effect at all on the output (de-
pendent/endogenous) variables, while γc = 1
indicates that the selected input variables
are complete and explain all variability in
the output variables. γc = 0.5 indicates that
50% variance of the output variables can
be explained by the selected input variables.
Therefore, γc ≈ 0.5 or γc < 0.5 is a typical in-
dication that additional input variables may
need to be selected for a meaningful analysis.

• Significance index of the direct effect is de-
fined as γd = 1 − |vi|

|vd| . γd = 1 indicates that
all effects are from the direct path, the input
variables are mutually independent and the
source of variability can be identified easily.
Therefore, γd < 0.5 is typical indication that
the source of the variability may not be iso-
lated even though the selected input vari-
ables are sufficient to explain the variability
in the output.

2.3 Asymptotic property of path analysis

Consider a model given by

y = aT X1 + e (2)

where y is the variable of concern (output vari-
able), X1 is an input variable that directly affects
y, and e is a disturbance variable that is indepen-
dent of X1. The problem of interest is to isolate
the source variables X1 from a group of input
(plausible source) variables. That is, to isolate X1

from a set of input variables, X .

Among this set of input variables, some are also
affected by the same source X1 and therefore a
strong correlation apparently exists between these
variables and y as well; the remaining variables are
irrelevant to y. Accordingly we partition X into
X1, X2 and X3. X2 is the set of input variables
that are directly affected by X1 and described by
the following model

X2 = FX1 + ε (3)

where F is a coefficient matrix of an appropriate
dimension and ε with Cov(ε) 
= 0 is a disturbance
variable vector. The posed condition Cov(ε) 
= 0
ensures X2 not to include any variable that is
exactly the same as one of the variables in X1

or a linear combination of X1. Physically, this
tells us that we should not include any two or
more input variables, which are exactly the same
or have exact linear relationship, into the input
variables. Numerically, this condition will avoid
the collinearity problem in regression analysis. X3

is a set of input variables that do not affect y and
may be represented by the following model

X3 = v (4)

where v is a disturbance variable vector and is
independent of both X1 and X2. In addition, e, ε
and v are mutually independent. Now suppose we
build a model of y by including all possible input
variables as the input:

ŷ = lT1 X1 + lT2 X2 + lT3 X3 (5)

where l1, l2 and l3 are model coefficients of ap-
propriate dimension. All variables, y, X1, X2 and
X3 have been normalized, namely EX1X

T
1 = I,

EX2X
T
2 = I, EX3X

T
3 = I. Using model (5), one

would like to know if the estimated model can
converge to the true model (2) in the limit.

Substituting eqns (3) and (4) into eqn.(5) yields

ŷ = lT1 X1 + lT2 (FX1 + ε) + lT3 X3

= (lT1 + lT2 F )X1 + lT2 ε + lT3 X3 (6)

Subtracting eqn.(2) by eqn.(6) yields



y − ŷ = (a − l1 − FT l2)T X1 − lT2 ε − lT3 X3 + e

(7)

Taking mean square value on both sides of eqn.(7)
results in

E(y − ŷ)2 (8)

= (a − l1 − FT l2)T E[X1X
T
1 ](a − l1 − FT l2)

+lT3 E[X3X
T
3 ]l3 + lT2 EεεT l2 + EeeT

= (a − l1 − FT l2)T (a − l1 − FT l2)

+lT3 l3 + lT2 EεεT l2 + Ee2

≥ Ee2 (9)

The equality is achieved if and only if l1 = a,
l2 = 0 and l3 = 0. The minimum of E(y − ŷ)2 is
achieved in the limit by least squares. Therefore,
the least squares estimation can asymptotically
converge to the true model (2) even though a
number of redundant/irrelevant variables have
been included in the model. The implication of
this result is that if X1 is the source of the
variability in y among all selected input variables,
then this source can be correctly identified by
checking the estimated coefficients of all input
variables. The one which is statistically nonzero is
likely to be the sources of variability. Other input
variables (with zero coefficients), although they
are also correlated with y, are in fact the response
to X1 but not the source of y, and can therefore
be ruled out through this analysis. One potential
problem in the calculation is the collinearity of the
input variables. If two or more of input variables
are highly correlated, then the regression analysis
may fail. In this case, PCA/PLS based regression
analysis may be applied.

Obviously, the path analysis proposed so far is
limited to steady state analysis. Process dynamics
such as time delay may affect the result if the dis-
turbances are relatively fast. Thus, the algorithm
discussed so far can only be applied to trace slow
disturbances. Extension to dynamic application
such as for oscillation detection will be discussed
in the next section.

2.4 An example on path analysis

The following example illustrates the path analy-
sis method. Four variables, x1, x2, x3 and y are
used for analysis where y is the quality variable of
the concern (output variable). All four variables
are highly correlated with the correlation coeffi-
cients shown in Table 1 (the last row of the table).
According to this simple correlation analysis all
input variables seem to have a strong correlation
with y (with the minimum correlation coefficient
0.77). However, the path analysis shown in Fig.2
clearly distinguishes x1 from others and indicates

Table 1. Correlation coefficients

x1 x2 x3 y

x1 1
x2 0.76 1
x3 0.91 0.72 1
y 0.94 0.77 0.83 1

that it is the real source of the variation in y. The
two indices can be calculated as

γc = 0.89

γd = 0.90

Both numbers are close to 1, indicating that the
selected variables are able to explain most of the
variability in y and the source of the variability
can be easily identified. γc = 0.89 also indicates
that 89% variability in y can be explained by the
selected variables and γd = 0.90 indicates that
the direct effect dominates the indirect effect and
therefore it is fairly easy to isolate the source of
the variability.

Fig. 2. An example of path analysis

If there are a large number of variables involved in
the analysis, the graphic representation may not
be efficient. The direct effect table can be con-
structed which lists the direct effect coefficients.
For example, the direct effect of the path analysis
figure shown in Fig.2 can be equally represented
by Table 2. Another table is known as total effect
table which shows the total effect from a input
variable to the output variable by combining di-
rect effect and indirect effect. For example, the
total effect from x1 to y, according to Fig.2, can
be calculated as

0.97 + 0.76× 0.15 + 0.91× (−0.16) = 0.94

while the total effect from x2 to y can be calcu-
lated as

0.15 + 0.76× 0.97 + 0.73× (−0.16) = 0.77



The total effect from this analysis is given in Ta-
ble 3, which is exactly the same as the correlation
coefficients between the input variables and the
output variable y as has been discussed above.

Table 2. Direct effect table

x1 x2 x3 ε

y 0.97 0.15 -0.16 0.33

Table 3. Total effect table

x1 x2 x3 ε

y 0.94 0.77 0.83 0.33

3. APPLICATION OF PATH ANALYSIS FOR
OSCILLATION DETECTION

One of the most important applications of the
path analysis is for oscillation detection and trac-
ing the source of the oscillation. Oscillation is a
dynamic behavior of the process and is determined
by its amplitude, frequency and phase. While the
amplitude and frequency can be captured by the
static path analysis, the phase lag or time delay
clearly nullifies the static approach.

For oscillation detection or tracing the oscillation,
one is not interested in finding the phase infor-
mation of the oscillation as long as the frequency
of the oscillation is captured. Autocovariance or
spectrum of a time series captures the oscillation
characteristics including amplitude and frequency
but is independent of the phase. Therefore, ap-
plying the path analysis to the autocovariance of
data will circumvent the problem of phase lag or
time delay.

Thornhill et al. (2001)(Thornhill et al., 2001a)
have presented a MATLAB function to calculate
filtered autocovariance and spectrum of time se-
ries. The same algorithm is used here for dy-
namic path analysis. A set of data (courtesy of
a SE Asian refinery) has been used for oscillation
detection in Thornhill et al. (2001)(Thornhill et
al., 2001b). The same set of data is revisited by
applying the path analysis to the autocovariance
of the data. The process diagram is shown in
Fig.3.

The question is to trace the source of the oscil-
lations. The path analysis is applied to the au-
tocovariance of the data to search for the source,
which constitutes the following five steps:

Step 1: Draw a control volume around PSA unit
(see Fig.3 for control volume 1). Tag 11 and 34 as
output variables; Tag 19 and 20 as input variables.
Tag 3 is not an independent input as it is found to

Fig. 3. Schematic of process and control volumes

Table 4. Summary of indices

γc γd

Tag 11 0.98 0.94
Tag 34 0.85 0.36

have an identical shape as Tag 20. Path analysis
yields the following results:

(1) The completeness index and significance in-
dex are calculated and shown in Tab4: The
first column of the table shows that Tag 19
and 20 can explain most variability of Tag 11
and 34. The second column shows that the
source of Tag 11’s variability can be easily
identified while the source of Tag 34 variabil-
ity may not be isolated easily.

(2) The direct effect table is shown in Tab.5. The

Table 5. Direct effect table

Tag 19 Tag 20 ε

Tag 11 0.92 0.07 0.14
Tag 34 0.26 0.71 0.25

first column clearly indicates that Tag 19 is
the source of Tag 11. The second column
shows that Tag 20 is possibly the main con-
tributor to Tag 34 but Tag 19 also has a con-
siderable contribution. Therefore, a unique
source of Tag 34 can not be identified.

Step 2: Draw a control volume around Reformer
(see Fig.3 for control volume 2). Tag 19 and 20 as
output; Tag 29, 30, 31, 34 as inputs. In this step,
we will analyze Tag 19 only. The analysis with Tag



20 as output will be performed in the next step.
Path analysis yields the following results:

(1) The two indices are calculated as γc = 0.93
and γd = 0.92. These results indicate that
most of the variability in Tag 19 can be ex-
plained by the selected inputs and in addition
the source can be easily identified.

(2) The direct effect table is summarized in
Tab.6. This result clearly indicates that Tag
34 is the source of Tag 19.

Table 6. Direct effect table

Tag 29 Tag 30 Tag 31 Tag 34 ε

Tag 19 0.04 0.06 0.03 0.93 0.26

Step 3: Continuation of Step 2 with Tag 20 as
output.

(1) The two indices are calculated as γc = 0.94
and γd = 0.97. These results indicate that
most of the variability in Tag 20 can be
explained by the selected inputs and the
source can be easily identified.

(2) The direct effect table is summarized in
Tab.7. This result clearly shows that Tag 34
is the source of Tag 20.

Table 7. Direct effect table

Tag 29 Tag 30 Tag 31 Tag 34 ε

Tag 20 -0.02 0.03 0.01 0.95 0.25

Comments: Step 2 and 3 indicate that Tag 34 is
actually the source of both Tag 19 and 20. This
result explains why Tag 34 can not find its source
from Tag 19 or 20 in Step 1.

Step 4: Draw a control volume around the whole
process as shown in the flowchart (see Fig.3 for
control volume 3). Tag 11 is the output (Tag
34 is a recycle stream and not an output); Tag
23, 25, 26, 27, 35, 36, 37, 30, 31 are the inputs.
Some inputs such as light naphtha flow rate is
not available and has not been included in the
analysis. Path analysis yields the following result
shown in Table 8. Due to the space limit, direct
path coefficients with small values are omitted
from the table. The two indices γc = 0.96 and
γd = 0.90 indicate that the selected inputs are
sufficient to explain the output variability and the
source of the variability can be easily identified.
The direct path coefficient from Tag 25 to Tag
11 clearly shows that Tag 25 is the source of the
oscillation in Tag 11. Combining with the results
obtained in previous steps, now the question is
which one of Tag 25 and Tag 34 is the source of
the oscillation. If there is no recycle from Tag 34
to Tag 25, then the result obtained in this step
clearly shows that Tag 25 is the real source and
Tag 34 is actually a response to Tag 25. However,

if there is a recycle from Tag 34 to Tag 25, then
Tag 34 could be the source, a result obtained in
Thornhill et al.(2001)(Thornhill et al., 2001b).

Table 8. Direct effect table

γc γd Tag 25 ε

Tag 11 0.96 0.90 1.0 0.20

Step 5: Draw a control volume around Feed unit,
Feed vaporizer/superheater unit and Reformer
feed pre-heat unit (see Fig.3 for control volume 4).
Tag 29 is taken as output; Tag 23, 25, 26, 35, 36,
37, 27 as inputs. Path analysis yields γc = 0.37,
the selected input variables are not sufficient to
explain the variability in Tag 29. Therefore, the
source of the Tag 29 oscillation can not be identi-
fied from the given tags.

4. CONCLUSIONS

In this paper the path analysis is proposed for
process troubleshooting by tracing the source of
variability/oscillation. Path analysis is similar to
correlation analysis in terms of its simplicity but
it provides a directional correlation information.
That is, a correlation analysis reveals all possi-
ble correlation between two variables, direct and
indirect, while path analysis reports the direct
relation of two variables. It is shown in this paper
that path analysis can be used to trace the source
of process variability. The result has also been
extended to tracing the oscillation by applying
the path analysis to autocovariance data. An in-
dustrial case study is presented to illustrate the
effectiveness of the proposed algorithms.
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