51 research outputs found

    C1q/tumor necrosis factor (TNF)-associated protein 6 (CTRP6) ameliorates the cognitive dysfunction induced by sevoflurane by activating AMPK/SIRT1 pathway in rats

    Get PDF
    Purpose: To evaluate the possible effects of C1q/tumor necrosis factor (TNF)-associated protein 6 (CTRP6) on postoperative cognitive dysfunction (POCD), including the potentially-related signaling pathway.Methods: Behavioral analysis and cognitive impairment were assessed in each group. Immunoblots were used to determine the level of CTRP6 following sevoflurane-induced nerve injury. Hippocampal neurons were identified using Nissl staining, while inflammatory response following neuronal injury was monitored by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction (qPCR). The involvement of adenosine monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway was determined using immunoblot.Results: CTRP6 alleviated sevoflurane-induced cognitive dysfunction in rats (p < 0.001). Moreover, CTRP6 reduced sevoflurane-induced nerve injury and inflammation in rats (p < 0.05).Conclusion: CTRP6 ameliorates sevoflurane-induced cognitive dysfunction by activating AMPK/SIRT1 pathway, thus offering a novel target for POCD treatment

    The influence of fitness on exercise blood pressure and its association with cardiac structure in adolescence

    Get PDF
    Purpose: Exaggerated exercise blood pressure (BP) is associated with altered cardiac structure and increased cardiovascular risk. Fitness modifies these associations, but the effect in healthy adolescents is unknown. We performed an observational study to determine the influence of fitness on post-exercise BP, and on its relationship with cardiac structure in adolescents. Methods: 4835 adolescents from the Avon Longitudinal Study of Parents and Children, (15.4 (0.3) years, 49% male) completed a submaximal cycle test. Fitness was estimated as physical work capacity 170 adjusted for lean body mass and post-exercise BP measured immediately posttest. Cardiovascular structure and function, including left ventricular (LV) mass (n = 1589), left atrium (LA) size (n = 1466), cardiac output (CO, n = 1610), and total peripheral resistance (TPR, n = 1610) were measured at rest by echocardiography 2.4 (0.4) years later. Results: Post-exercise systolic BP increased stepwise by fitness tertile (131.2 mm Hg [130.4, 132.1]; 137.3 mm Hg [136.5, 138.0]; 142.3 mm Hg [141.5, 143.1]). Each 5 mm Hg of post-exercise systolic BP was associated with 2.46 g [1.91, 3.01] greater LV mass, 0.02 cm [0.02, 0.03] greater LA size, and 0.25 g/m2.7 [0.14, 0.36] greater LV mass index. Adjustment for fitness abolished associations (0.29 g [-0.16, 0.74]; 0.01 cm [-0.001, 0.014] and 0.08 g/m2.7 [-0.001, 0.002]). Similar associations between post-exercise systolic BP and each outcome were found between the lowest and highest fitness thirds. CO increased with fitness third (difference 0.06 L/min [-0.05, 0.17]; 0.23 L/min [0.12, 0.34]) while TPR decreased (difference -0.13 mm Hg·min/L [-0.84,0.59]; -1.08 mm Hg·min/L [-0.1.80, 0.35]). Conclusions: Post-exercise systolic BP increased with fitness, which modified its association with cardiac structure. Higher CO, but lower TPR suggests a physiologically adapted cardiovascular system with greater fitness, highlighting the importance of fitness in adolescence

    Masked hypertension and submaximal exercise blood pressure among adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC)

    Get PDF
    Purpose: Masked hypertension is associated with increased cardiovascular risk but is undetectable by clinic blood pressure (BP). Elevated systolic BP responses to submaximal exercise reveal the presence of masked hypertension in adults, but it is unknown whether this is the case during adolescence. We aimed to determine if exercise BP was raised in adolescents with masked hypertension, and its association with cardiovascular risk markers.Methods: A total of 657 adolescents (aged 17.7 ± 0.3 years; 41.9% male) from the Avon longitudinal study of parents and children (ALSPAC) completed a step-exercise test with pre-, post-, and recovery-exercise BP, clinic BP and 24-hour ambulatory BP. Masked hypertension was defined as clinic BP Results: Fifty participants (7.8%) were classified with masked hypertension. Clinic, pre-, post-, and recovery-exercise systolic BP were associated with masked hypertension (AUC ≥ 0.69 for all, respectively), with the clinic systolic BP threshold of 115 mm Hg having high sensitivity and specificity and exercise BP thresholds of 126, 150, and 130 mm Hg, respectively, having high specificity and negative predictive value (individually or when combined) for ruling out the presence of masked hypertension. Additionally, this exercise systolic BP above the thresholds was associated with greater left-ventricular mass index and aortic PWV.Conclusions: Submaximal exercise systolic BP is associated with masked hypertension and adverse cardiovascular structure in adolescents. Exercise BP may be useful in addition to clinic BP for screening of high BP and cardiovascular risk in adolescents

    Insights into the reduction of antibiotic-resistant bacteria and mobile antibiotic resistance genes by black soldier fly larvae in chicken manure

    Get PDF
    The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.This work was funding by the National Natural Science Foundation of China (41977279), the Fundamental Research Funds for the Central Universities (2662020SKPY002 and 2662022SKYJ006), the Key Technology R & D Program of Hubei Province (2021BBA258) and the Major Project of Hubei Hongshan Laboratory (2022hszd013).Peer ReviewedPostprint (published version

    A Novel CRYBB2

    Get PDF

    Neutron powder-diffraction study of phase transitions in strontium-doped bismuth ferrite: 1. Variation with chemical composition

    Get PDF
    We report results from a study of the crystal structure of strontium-doped BiFeO3 using neutron powder diffraction and the Rietveld method. Measurements were obtained over a wide range of temperatures from 300–800 K for compositions between 10–16% replacement of bismuth by strontium. The results show a clear variation of the two main structural deformations – symmetry-breaking rotations of the FeO6 octahedra and polar ionic displacements that give ferroelectricity – with chemical composition, but relatively little variation with temperature. On the other hand, the antiferromagnetic order shows a variation with temperature and a second order phase transition consistent with the classical Heisenberg model. There is, however, very little variation in the behaviour of the antiferromagnetism with chemical composition, and hence with the degree of the structural symmetry-breaking distortions. We therefore conclude that there is no significant coupling between antiferromagnetism and ferroelectricity in Sr-doped BiFeO3 and, by extension, in pure BiFeO3

    The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    Get PDF
    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues
    corecore