22,652 research outputs found
Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland
Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan
On determination of the geometric cosmological constant from the OPERA experiment of superluminal neutrinos
The recent OPERA experiment of superluminal neutrinos has deep consequences
in cosmology. In cosmology a fundamental constant is the cosmological constant.
From observations one can estimate the effective cosmological constant
which is the sum of the quantum zero point energy
and the geometric cosmological constant . The
OPERA experiment can be applied to determine the geometric cosmological
constant . It is the first time to distinguish the contributions of
and from each other by experiment. The
determination is based on an explanation of the OPERA experiment in the
framework of Special Relativity with de Sitter space-time symmetry.Comment: 7 pages, no figure
Superconductivity and magnetic order in the non-centrosymmetric Half Heusler compound ErPdBi
We report superconductivity at K and magnetic order at K in the semi-metallic noncentrosymmetric Half Heusler compound ErPdBi.
The upper critical field, , has an unusual quasi-linear temperature
variation and reaches a value of 1.6 T for . Magnetic order is
found below and is suppressed at T for . Since , the interaction of superconductivity and magnetism
is expected to give rise to a complex ground state. Moreover, electronic
structure calculations show ErPdBi has a topologically nontrivial band
inversion and thus may serve as a new platform to study the interplay of
topological states, superconductivity and magnetic order.Comment: 6 pages, 5 figures; accepted for publication in Europhysics Letter
A New Method to Calculate Electromagnetic Impedance Matching Degree in One-Layer Microwave Absorbers
A delta-function method was proposed to quantitatively evaluate the
electromagnetic impedance matching degree. Measured electromagnetic parameters
of {\alpha}-Fe/Fe3B/Y2O3 nanocomposites are applied to calculate the matching
degree by the method. Compared with reflection loss and quarter-wave principle
theory, the method accurately reveals the intrinsic mechanism of microwave
transmission and reflection properties. A possible honeycomb structure with
promising high-performance microwave absorption according to the method is also
proposed.Comment: 13 pages, 3 figure
Accurate Modelling of Left-Handed Metamaterials Using Finite-Difference Time-Domain Method with Spatial Averaging at the Boundaries
The accuracy of finite-difference time-domain (FDTD) modelling of left-handed
metamaterials (LHMs) is dramatically improved by using an averaging technique
along the boundaries of LHM slabs. The material frequency dispersion of LHMs is
taken into account using auxiliary differential equation (ADE) based dispersive
FDTD methods. The dispersive FDTD method with averaged permittivity along the
material boundaries is implemented for a two-dimensional (2-D) transverse
electric (TE) case. A mismatch between analytical and numerical material
parameters (e.g. permittivity and permeability) introduced by the time
discretisation in FDTD is demonstrated. The expression of numerical
permittivity is formulated and it is suggested to use corrected permittivity in
FDTD simulations in order to model LHM slabs with their desired parameters. The
influence of switching time of source on the oscillation of field intensity is
analysed. It is shown that there exists an optimum value which leads to fast
convergence in simulations.Comment: 17 pages, 7 figures, submitted to Journal of Optics A Nanometa
special issu
Semileptonic B Decays into Excited Charmed Mesons (, ) in HQEFT
Exclusive semileptonic B decays into excited charmed mesons (, )
are studied up to the order of in the framework of the heavy quark
effective field theory (HQEFT), which contains the contributions of both
particles and antiparticles. Two wave functions and ,
which characterize the contributions from the kinematic operator at the order
of , are calculated by using QCD sum rule approach in HQEFT. Zero recoil
values of other two wave functions and are extracted
from the excited charmed-meson masses. Possible effects from the spin-dependent
transition wave functions which arise from the magnetic operators at the order
of are analyzed. It is shown that the experimental measurements for the
branching ratios of and can be understood
in the framework of HQEFT.Comment: 27 pages, RevTex, 4 figures, 3 tables, to be published in IJMP
Observational constraints on cosmic neutrinos and dark energy revisited
Using several cosmological observations, i.e. the cosmic microwave background
anisotropies (WMAP), the weak gravitational lensing (CFHTLS), the measurements
of baryon acoustic oscillations (SDSS+WiggleZ), the most recent observational
Hubble parameter data, the Union2.1 compilation of type Ia supernovae, and the
HST prior, we impose constraints on the sum of neutrino masses (\mnu), the
effective number of neutrino species (\neff) and dark energy equation of
state (), individually and collectively. We find that a tight upper limit on
\mnu can be extracted from the full data combination, if \neff and are
fixed. However this upper bound is severely weakened if \neff and are
allowed to vary. This result naturally raises questions on the robustness of
previous strict upper bounds on \mnu, ever reported in the literature. The
best-fit values from our most generalized constraint read
\mnu=0.556^{+0.231}_{-0.288}\rm eV, \neff=3.839\pm0.452, and
at 68% confidence level, which shows a firm lower limit on
total neutrino mass, favors an extra light degree of freedom, and supports the
cosmological constant model. The current weak lensing data are already helpful
in constraining cosmological model parameters for fixed . The dataset of
Hubble parameter gains numerous advantages over supernovae when ,
particularly its illuminating power in constraining \neff. As long as is
included as a free parameter, it is still the standardizable candles of type Ia
supernovae that play the most dominant role in the parameter constraints.Comment: 39 pages, 15 figures, 7 tables, accepted to JCA
- …