93,513 research outputs found

    Dynamics of quantum-classical hybrid system: effect of matter-wave pressure

    Full text link
    Radiation pressure affects the kinetics of a system exposed to the radiation and it constitutes the basis of laser cooling. In this paper, we study {\it matter-wave pressure} through examining the dynamics of a quantum-classical hybrid system. The quantum and classical subsystem have no explicit coupling to each other, but affect mutually via a changing boundary condition. Two systems, i.e., an atom and a Bose-Einstein condensate(BEC), are considered as the quantum subsystems, while an oscillating wall is taken as the classical subsystem. We show that the classical subsystem would experience a force proportional to Q3Q^{-3} from the quantum atom, whereas it acquires an additional force proportional to Q2Q^{-2} from the BEC due to the atom-atom interaction in the BEC. These forces can be understood as the {\it matter-wave pressure}.Comment: 7 pages, 6 figue

    Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems

    Full text link
    We study the quantum-jump-based feedback control on the entanglement shared between two qubits with one of them subject to decoherence, while the other qubit is under the control. This situation is very relevant to a quantum system consisting of nuclear and electron spins in solid states. The possibility to prolong the coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit subject directly to decoherence

    Control of tetrahedral coordination and superconductivity in FeSe0.5Te0.5 thin films

    Full text link
    We demonstrate a close relationship between superconductivity and the dimensions of the Fe-Se(Te) tetrahedron in FeSe0.5Te0.5. This is done by exploiting thin film epitaxy, which provides controlled biaxial stress, both compressive and tensile, to distort the tetrahedron. The Se/Te height within the tetrahedron is found to be of crucial importance to superconductivity, in agreement with the theoretical proposal that (pi,pi) spin fluctuations promote superconductivity in Fe superconductors

    Use of elastic stability analysis to explain the stress-dependent nature of soil strength

    Get PDF
    The peak and critical state strengths of sands are linearly related to the stress level, just as the frictional resistance to sliding along an interface is related to the normal force. The analogy with frictional sliding has led to the use of a ‘friction angle’ to describe the relationship between strength and stress for soils. The term ‘friction angle’ implies that the underlying mechanism is frictional resistance at the particle contacts. However, experiments and discrete element simulations indicate that the material friction angle is not simply related to the friction angle at the particle contacts. Experiments and particle-scale simulations of model sands have also revealed the presence of strong force chains, aligned with the major principal stress. Buckling of these strong force chains has been proposed as an alternative to the frictional-sliding failure mechanism. Here, using an idealized abstraction of a strong force chain, the resistance is shown to be linearly proportional to the magnitude of the lateral forces supporting the force chain. Considering a triaxial stress state, and drawing an analogy between the lateral forces and the confining pressure in a triaxial test, a linear relationship between stress level and strength is seen to emerge from the failure-by-buckling hypothesis

    Quantum Brayton cycle with coupled systems as working substance

    Full text link
    We explore the quantum version of Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process, one corresponds to the external magnetic field (characterized by FxF_x) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by FyF_y). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by FxF_x), whereas the subsystem's cycle is of quantum Otto in another Brayton cycle (characterized by FyF_y). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system are usually larger than the sum of work done by the two subsystems. The other interesting finding is that for the cycle characterized by FyF_y, the subsystem can be a refrigerator while the total system is a heat engine. The result in the paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.

    Entropy and specific heat for open systems in steady states

    Full text link
    The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.Comment: 4 pages, 7 figure
    corecore