869 research outputs found

    The effects of mate switching tacticon reproductive performance of the severum cichlid, Heros severus

    Get PDF
    This study investigated the effects of mate switching on the reproductive performance of the severum cichlid, Heros severus, by advancing the egg and larval production in hatcheries. Two reproductive tactic treatments of “monogamous pair” and “mate switching” were used for evaluating 4 reproductive traits of egg production, hatching rate, spawning intervals, and starvation tolerance of the larvae in 6 spawning activities. The number of eggs was not significantly different between the two reproductive tactic treatments in the 6 spawning activities, but the spawning intervals, hatching rate, and survival activity index were all significantly different. Daily average egg and larval production in the mate switching treatment were estimated to be 87.3 eggs and 43.1 larvae per pair of fish, respectively, which was 2.89 times and 1.99 times of those in the monogamous pair treatment, who produced about 30.2 eggs and 21.6 larvae per pair. Our results clearly showed that the reproductive tactic of mate switching is a suitable method for increasing the egg and larval production rate of the severum cichlid

    Entropy of entangled three-level atoms interacting with entangled cavity fields: entanglement swapping

    Full text link
    The dynamics of an entangled atomic system in a partial interaction with entangled cavity fields, characterizing an entanglement swapping, have been studied through the use of Von Neuman entropy. We consider the interaction via two-photon process given by a full microscopical Hamiltonian approach. The explicit expression of the entropy is obtained, wherewith we estimated the largest period. The numerical simulation of the entropy of the entangled atomic and cavity systems shows that its time evolution presents multi-periodicity. The effects of detuning parameter on the period and the amplitude of the entropy are also discussed.Comment: 5 pages, 8 figure

    Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion

    Get PDF
    Transient receptor potential vanilloid 4 (TRPV4) cation channels are functional in all renal vascular segments and mediate endothelium-dependent vasorelaxation. Moreover, they are expressed in distinct parts of the tubular system and activated by cell swelling. Ischaemia/reperfusion injury (IRI) is characterized by tubular injury and endothelial dysfunction. Therefore, we hypothesised a putative organ protective role of TRPV4 in acute renal IRI. IRI was induced in TRPV4 deficient (Trpv4 KO) and wild-type (WT) control mice by clipping the left renal pedicle after right-sided nephrectomy. Serum creatinine level was higher in Trpv4 KO mice 6 and 24 hours after ischaemia compared to WT mice. Detailed histological analysis revealed that IRI caused aggravated renal tubular damage in Trpv4 KO mice, especially in the renal cortex. Immunohistological and functional assessment confirmed TRPV4 expression in proximal tubular cells. Furthermore, the tubular damage could be attributed to enhanced necrosis rather than apoptosis. Surprisingly, the percentage of infiltrating granulocytes and macrophages were comparable in IRI-damaged kidneys of Trpv4 KO and WT mice. The present results suggest a renoprotective role of TRPV4 during acute renal IRI. Further studies using cell-specific TRPV4 deficient mice are needed to clarify cellular mechanisms of TRPV4 in IRI

    Exploration of hyperfine interaction between constituent quarks via eta productions

    Full text link
    In this work, the different exchange freedom, one gluon, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the eta production processes, πpηn\pi^{-}p\rightarrow\eta n and γpηp\gamma p\rightarrow\eta p. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one pion exchange can not describe the observables and spectrum simultaneously, so can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S11 sates and D13 states as about -30 and 6 degree respectively.Comment: 7 pages, 4 figures, 4 table

    Horizonless Rotating Solutions in (n+1)(n+1)-dimensional Einstein-Maxwell Gravity

    Full text link
    We introduce two classes of rotating solutions of Einstein-Maxwell gravity in n+1n+1 dimensions which are asymptotically anti-de Sitter type. They have no curvature singularity and no horizons. The first class of solutions, which has a conic singularity yields a spacetime with a longitudinal magnetic field and kk rotation parameters. We show that when one or more of the rotation parameters are non zero, the spinning brane has a net electric charge that is proportional to the magnitude of the rotation parameters. The second class of solutions yields a spacetime with an angular magnetic field and % \kappa boost parameters. We find that the net electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the magnitude of the velocity of the brane. We also use the counterterm method inspired by AdS/CFT correspondence and calculate the conserved quantities of the solutions. We show that the logarithmic divergencies associated to the Weyl anomalies and matter field are zero, and the rr divergence of the action can be removed by the counterterm method.Comment: 14 pages, references added, Sec. II amended, an appendix added. The version to appear in Phys. Rev.

    Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development

    Get PDF
    Background: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI
    corecore