135 research outputs found

    Evolution of the electronic band structure of twisted bilayer graphene upon doping

    Full text link
    The electronic band structure of twisted bilayer graphene develops van Hove singularities whose energy depends on the twist angle between the two layers. Using Raman spectroscopy, we monitor the evolution of the electronic band structure upon doping using the G peak area which is enhanced when the laser photon energy is resonant with the energy separation of the van Hove singularities. Upon charge doping, the Raman G peak area initially increases for twist angles larger than a critical angle and decreases for smaller angles. To explain this behavior with twist angle, the energy of separation of the van Hove singularities must decrease with increasing charge density demonstrating the ability to modify the electronic and optical properties of twisted bilayer graphene with doping.Comment: 10 pages, 4 figure

    Magnetic Mn5Ge3 nanocrystals embedded in crystalline Ge: a magnet/semiconductor hybrid synthesized by ion implantation

    Get PDF
    The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ions implantation at elevated temperature. By X-ray diffraction and transmission electron microscopy, we observe crystalline Mn5Ge3 with variable size depending on the Mn ion fluence. The electronic structure of Mn in Mn5Ge3 nanocrystals is 3d6 configuration, the same as in bulk Mn5Ge3. A large positive magnetoresistance has been observed at low temperatures. It can be explained by the conductivity inhomogeneity in the magnetic/semiconductor hybrid system.Comment: 16 pages, 5 figure

    Phosphorothioate DNA Mediated Sequence-Insensitive Etching and Ripening of Silver Nanoparticles

    Get PDF
    Many DNA-functionalized nanomaterials and biosensors have been reported, but most have ignored the influence of DNA on the stability of nanoparticles. We observed that cytosine-rich DNA oligonucleotides can etch silver nanoparticles (AgNPs). In this work, we showed that phosphorothioate (PS)-modified DNA (PS-DNA) can etch AgNPs independently of DNA sequence, suggesting that the thio-modifications are playing the major role in etching. Compared to unmodified DNA (e.g., poly-cytosine DNA), the concentration of required PS DNA decreases sharply, and the reaction rate increases. Furthermore, etching by PS-DNA occurs quite independent of pH, which is also different from unmodified DNA. The PS-DNA mediated etching could also be controlled well by varying DNA length and conformation, and the number and location of PS modifications. With a higher activity of PS-DNA, the process of etching, ripening, and further etching was taken place sequentially. The etching ability is inhibited by forming duplex DNA and thus etching can be used to measure the concentration of complementary DNA

    Preparation of carbon nanotube/polyaniline nanofiber by electrospinning

    Get PDF
    AbstractPolyaniline (PANI) is one of the most promising conductive polymers for its cheap and abundant, ease of synthesis, high conductivity and good environmental stability. However the disadvantages, such as insolubility, difficulties in processing and poor mechanical property hinder its application. Carbon nanotube (CNT) was considered as an excellent reinforcing material for its excellent mechanical properties, such as high aspect ratio, high chemical and thermal stability and good conductivity. In this paper, the CNT/PANI composite was prepared from the CNT/aniline nanofiber oxidation, which was obtained by the electrospinning technique. The composite electrochemical performances were characterized by the cyclic voltammogram, galvanostatic charging/discharging and four-probe method. The CNT/PANI composite had excellent application foreground in electrochemical energy field due to large current response, high conductivity and specific capacity

    Topologically Protected Helical States in Minimally Twisted Bilayer Graphene

    Full text link
    In minimally twisted bilayer graphene, a moir{\'e} pattern consisting of AB and BA stacking regions separated by domain walls forms. These domain walls are predicted to support counterpropogating topologically protected helical (TPH) edge states when the AB and BA regions are gapped. We fabricate designer moir{\'e} crystals with wavelengths longer than 50 nm and demonstrate the emergence of TPH states on the domain wall network by scanning tunneling spectroscopy measurements. We observe a double-line profile of the TPH states on the domain walls, only occurring when the AB and BA regions are gapped. Our results demonstrate a practical and flexible method for TPH state network construction.Comment: 12 pages, 4 figure

    Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion

    Get PDF
    Zhang Q, Huang A, Ai X, et al. Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion. Advanced Energy Materials . 2021: 2101213.Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of approximate to 4 V within an area of 0.01 m(2) exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation
    corecore