75 research outputs found

    Plant buffering against the high-light stress-induced accumulation of CsGA2ox8 transcripts via alternative splicing to finely tune gibberellin levels and maintain hypocotyl elongation

    Get PDF
    Ajuts: this study was supported by The National Key Research and Development Program of China (2019YFD1000300), the International Postdoctoral Exchange Fellowship Program from the China Postdoctoral Council (20170053), the Technology System Construction of Modern Agricultural Industry of Shanghai (19Z113040008), and the Presidential Foundation of Guangdong Academy of Agricultural Sciences (BZ201901).In plants, alternative splicing (AS) is markedly induced in response to environmental stresses, but it is unclear why plants generate multiple transcripts under stress conditions. In this study, RNA-seq was performed to identify AS events in cucumber seedlings grown under different light intensities. We identified a novel transcript of the gibberellin (GA)-deactivating enzyme Gibberellin 2-beta-dioxygenase 8 (CsGA2ox8). Compared with canonical CsGA2ox8.1, the CsGA2ox8.2 isoform presented intron retention between the second and third exons. Functional analysis proved that the transcript of CsGA2ox8.1 but not CsGA2ox8.2 played a role in the deactivation of bioactive GAs. Moreover, expression analysis demonstrated that both transcripts were upregulated by increased light intensity, but the expression level of CsGA2ox8.1 increased slowly when the light intensity was >400 µmol·m −2 ·s −1 PPFD (photosynthetic photon flux density), while the CsGA2ox8.2 transcript levels increased rapidly when the light intensity was >200 µmol·m −2 ·s −1 PPFD. Our findings provide evidence that plants might finely tune their GA levels by buffering against the normal transcripts of CsGA2ox8 through AS

    Probing the fractional quantum Hall phases in valley-layer locked bilayer MoS2_{2}

    Full text link
    Semiconducting transition-metal dichalcogenides (TMDs) exhibit high mobility, strong spin-orbit coupling, and large effective masses, which simultaneously leads to a rich wealth of Landau quantizations and inherently strong electronic interactions. However, in spite of their extensively explored Landau levels (LL) structure, probing electron correlations in the fractionally filled LL regime has not been possible due to the difficulty of reaching the quantum limit. Here, we report evidence for fractional quantum Hall (FQH) states at filling fractions 4/5 and 2/5 in the lowest LL of bilayer MoS2_{2}, manifested in fractionally quantized transverse conductance plateaus accompanied by longitudinal resistance minima. We further show that the observed FQH states sensitively depend on the dielectric and gate screening of the Coulomb interactions. Our findings establish a new FQH experimental platform which are a scarce resource: an intrinsic semiconducting high mobility electron gas, whose electronic interactions in the FQH regime are in principle tunable by Coulomb-screening engineering, and as such, could be the missing link between atomically thin graphene and semiconducting quantum wells.Comment: 10 pages, 4 figure

    Marine fungus Aspergillus c1. sp metabolite activates the HSF1/PGC-1α axis, inducing a thermogenic program for treating obesity

    Get PDF
    Background and aims: Obesity is one of the most prevalent diseases worldwide with less ideal approved agents in clinic. Activating the HSF1/PGC-1α axis in adipose tissues has been reported to induce thermogenesis in mice, which presents a promising therapeutic avenue for obesity treatment. The present study aimed to identified novel natural HSF1 activator and evaluated the therapeutic effects of the newly discovered compound on obesity-associated metabolic disorders and the molecular mechanisms of these effects.Methods: Our previous reported HSF1/PGC-1α activator screening system was used to identify novel natural HSF1 activator. The PGC-1α luciferase activity, immunoblot, protein nuclear-translocation, immunofluorescence, chromatin immunoprecipitation assays were used to evaluate the activity of compound HN-001 in activating HSF1. The experiments of mitochondrial number measurement, TG assay and imaging, cellular metabolic assay, gene assays, and CRISPR/Cas 9 were applied for investigating the metabolic effect of HN-001 in C3H10-T1/2 adipocytes. The in vivo anti-obesity efficacies and beneficial metabolic effects of HN-001 were evaluated by performing body and fat mass quantification, plasma chemical analysis, GTT, ITT, cold tolerance test, thermogenesis analysis.Results: HN-001 dose- and time-dependently activated HSF1 and induced HSF1 nuclear translocation, resulting in an enhancement in binding with the gene Pgc-1α. This improvement induced activation of adipose thermogenesis and enhancement of mitochondrial oxidation capacity, thus inhibiting adipocyte maturation. Deletion of HSF1 in adipocytes impaired mitochondrial oxidation and abolished the above beneficial metabolic effects of HN-001, including adipocyte browning induction, improvements in mitogenesis and oxidation capacity, and lipid-lowering ability. In mice, HN-001 treatment efficiently alleviated diet-induced obesity and metabolic disorders. These changes were associated with increased body temperature in mice and activation of the HSF1/PGC-1α axis in adipose tissues. UCP1 expression and mitochondrial biogenesis were increased in both white and brown adipose tissues of HN-001-treated mice.Conclusion: These data indicate that HN-001 may have therapeutic potential for obesity-related metabolic diseases by increasing the capacity of energy expenditure in adipose tissues through a mechanism involving the HSF1/PGC-1α axis, which shed new light on the development of novel anti-obesity agents derived from marine sources

    In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment

    Get PDF
    Cancer recurrence after surgical resection remains a significant cause of treatment failure. Here, we have developed an in situ formed immunotherapeutic bioresponsive gel that controls both local tumour recurrence after surgery and development of distant tumours. Briefly, calcium carbonate nanoparticles pre-loaded with the anti-CD47 antibody are encapsulated in the fibrin gel and scavenge H+ in the surgical wound, allowing polarization of tumour-associated macrophages to the M1-like phenotype. The released anti-CD47 antibody blocks the ‘don’t eat me’ signal in cancer cells, thereby increasing phagocytosis of cancer cells by macrophages. Macrophages can promote effective antigen presentation and initiate T cell mediated immune responses that control tumour growth. Our findings indicate that the immunotherapeutic fibrin gel ‘awakens’ the host innate and adaptive immune systems to inhibit both local tumour recurrence post surgery and potential metastatic spread

    Study on Growth Interface of Large Nd:YAG Crystals

    No full text
    A study was performed on the growth interface of a large-diameter 1 at% neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystal grown using the Czochralski method. Red parallel light and an orthogonal polarizing system were used to observe the distribution of the central and lateral cores of the crystal at different growth interfaces. The solid–liquid interface of large-diameter Nd:YAG crystal growth was mainly determined via the interaction between natural and forced convection. The shape of the solid–liquid interface was mainly controlled via maintaining the crystal rotation rate and the temperature field. Interface inversion generally occurred during the shoulder-expanding stage and late stages of the growth of the cylindrical portion of the crystal. The occurrence of interface inversion is directly related to the temperature field, process parameters, and diameter of the crystal. The growth shape of the crystal interface determined the size and distribution of the central and lateral cores of the crystal. The area of the central and lateral cores was reduced via adjusting the temperature gradient of the solid–liquid interface and crystal rotation speed

    Dynamic immune response in the spleens of rainbow trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus revealed by transcriptome and immune-related genes expression analysis

    No full text
    Rainbow trout (Oncorhynchus mykiss) is, economically, one of the most important cultured fish in the world. Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen causing high morbidity and mortality in rainbow trout. To gain more insight into the immune response of rainbow trout to the virus, RNA sequencing technology was used to examine the transcriptome profiles in spleens of trout infected and uninfected with IHNV. A total of 9144 differentially expressed genes (DEGs) were identified, of which 3274 were upregulated and 5870 were downregulated. The expression levels of 13 DEGs were validated by quantitative real-time PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that most DEGs were significantly enriched in major immune terms such as immune system process, immune effector process, response to stimulus and key immune signaling pathways. Moreover, we detected the expression levels of six key immune-related genes based on transcriptomic data and protein–protein interaction analysis in four important immune signaling pathways at 0, 6, 12, 24, 48, 72, 96, 120, and 144 h post-infection, including Toll-like receptor signaling pathway (TLR2 and TLR5M), RIG-I-like receptor signaling pathway (TRIM25), NOD-like receptor signaling pathway (RIPK2 and A20) and JAK-STAT signaling pathway (SOCS2). Results revealed that the immune-related genes in these pathways were involved in the antiviral immune response. Altogether, this study provides a better understanding of the dynamic immune response of rainbow trout infected with IHNV, which will lay a foundation for further study of molecular mechanisms of anti-IHNV innate immunity
    • …
    corecore