2,031 research outputs found

    MR. FISCAL: The Effects of a Financial Education Curriculum on Family Medicine Residents\u27 and Fellows\u27 Financial Well-Being and Literacy

    Get PDF
    CONTEXT: Financial education is not routinely offered during medical training. Residents and fellows thus have low financial literacy, high debt, and deficits in their financial preparedness. Poor financial literacy contributes to the ever-growing problems of physician stress, job dissatisfaction, burnout, and depression within primary care. It is postulated that implementation of a financial education curriculum for family medicine physicians-in-training will improve their sense of financial well-being and literacy. OBJECTIVE: This study aims to determine the effects of a formal financial education curriculum on family medicine residents\u27 and fellows\u27 financial well-being and literacy. DESIGN: Solomon four group. PARTICIPANTS: Convenience sample, voluntary participation. Residents and fellows at 16 family medicine residency programs (military, academic/university, and community-based) in the U.S. INTERVENTION: A standardized video-based financial education curriculum entitled Medical Residency Financial Skills Curriculum to Advance Literacy (MR. FISCAL). Topics include: money management, credit, debt management, risk management, investment and retirement planning. Educational content designed by the research team using the Institute for Financial Literacy National Standards for Adult Financial Literacy Education content. INSTRUMENT: Anonymous, web-based, 24-question survey, administered via Qualtrics. Survey is comprised of InCharge Financial Distress/Financial Well-Being (IFDFW) Scale measuring perceived levels of financial distress/well-being, plus 16 additional questions collecting demographic and self-reported financial data. MAIN OUTCOME MEASURES: The effect of this financial education curriculum on family medicine residents’ and fellows’ financial well-being and literacy as measured by the validated and reliable IFDFW scale and comparison of pre and post-intervention self-reported financial data. RESULTS: Work-in-progress. Anticipate comparison of pretest-posttest intervention versus posttest-only control group data. Additional statistical analysis will compare level of training, type of residency program, other demographics, financial data. CONCLUSION: There is currently a paucity of information on financial well-being and literacy among family medicine residents and fellows. This financial curriculum could be shared throughout primary care if improvements are observed

    Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii

    Get PDF
    Multidrug efflux pumps provide clinically significant levels of drug resistance in a number of Gram-negative hospital-acquired pathogens. These pathogens frequently carry dozens of genes encoding putative multidrug efflux pumps. However, it can be difficult to determine how many of these pumps actually mediate antimicrobial efflux, and it can be even more challenging to identify the regulatory proteins that control expression of these pumps. In this study, we developed an innovative high-throughput screening method, combining transposon insertion sequencing and cell sorting methods (TraDISort), to identify the genes encoding major multidrug efflux pumps, regulators, and other factors that may affect the permeation of antimicrobials, using the nosocomial pathogen Acinetobacter baumannii. A dense library of more than 100,000 unique transposon insertion mutants was treated with ethidium bromide, a common substrate of multidrug efflux pumps that is differentially fluorescent inside and outside the bacterial cytoplasm. Populations of cells displaying aberrant accumulations of ethidium were physically enriched using fluorescence-activated cell sorting, and the genomic locations of transposon insertions within these strains were determined using transposon-directed insertion sequencing. The relative abundance of mutants in the input pool compared to the selected mutant pools indicated that the AdeABC, AdeIJK, and AmvA efflux pumps are the major ethidium efflux systems in A. baumannii. Furthermore, the method identified a new transcriptional regulator that controls expression of amvA. In addition to the identification of efflux pumps and their regulators, TraDISort identified genes that are likely to control cell division, cell morphology, or aggregation in A. baumannii. IMPORTANCE Transposon-directed insertion sequencing (TraDIS) and related technologies have emerged as powerful methods to identify genes required for bacterial survival or competitive fitness under various selective conditions. We applied fluorescence-activated cell sorting (FACS) to physically enrich for phenotypes of interest within a mutant population prior to TraDIS. To our knowledge, this is the first time that a physical selection method has been applied in parallel with TraDIS rather than a fitness-induced selection. The results demonstrate the feasibility of this combined approach to generate significant results and highlight the major multidrug efflux pumps encoded in an important pathogen. This FACS-based approach, TraDISort, could have a range of future applications, including the characterization of efflux pump inhibitors, the identification of regulatory factors controlling gene or protein expression using fluorescent reporters, and the identification of genes involved in cell replication, morphology, and aggregation

    BDNF Val66Met modifies the risk of childhood trauma on obsessive-compulsive disorder

    Get PDF
    Childhood trauma has been linked to the development of later psychopathology, including obsessive-compulsive disorder (OCD). Although evidence exists to suggest that genetic and environmental factors are involved in the aetiology of OCD, little attention has been paid to the interactions that exist between genes and environment. The aim of this study was to investigate gene-by-environment interactions between childhood trauma and the BDNF Val66Met variant in patients with OCD. Childhood trauma was assessed in 134 OCD patients and 188 controls using the Childhood Trauma Questionnaire (CTQ). Linear regression models were used for statistical analyses. Geneeenvironment interactions were estimated by including a combined genotype and CTQ score in the models as interaction terms. All analyses were adjusted for age, gender, CTQ minimisation-denial score and home language by including them in the logistic regression models as covariates. Childhood trauma, specifically emotional abuse and neglect, increased the odds of having OCD significantly (p < 0.001). Although no significant association was observed between BDNF Val66Met and the development of OCD, interaction analysis indicated that the BDNF Met-allele interacted with childhood emotional abuse to increase the risk of OCD significantly in a dose-dependent manner (p < 0.024). To our knowledge, this is one of the first studies to investigate geneeenvironment interactions in OCD, and the findings indicate the importance of collating genetic and environmental variables in future studies.Web of Scienc

    Autoimmunity in CD73/Ecto-5′-Nucleotidase Deficient Mice Induces Renal Injury

    Get PDF
    Extracellular adenosine formed by 5′-ectonucleotidase (CD73) is involved in tubulo-glomerular feedback in the kidney but is also known to be an important immune modulator. Since CD73−/−mutant mice exhibit a vascular proinflammatory phenotype, we asked whether long term lack of CD73 causes inflammation related kidney pathologies. CD73−/−mice (13 weeks old) showed significantly increased low molecule proteinuria compared to C57BL6 wild type controls (4.8≥0.52 vs. 2.9±0.54 mg/24 h, p<0.03). Total proteinuria increased to 5.97±0.78 vs. 2.55±0.35 mg/24 h at 30 weeks (p<0.01) whereas creatinine clearance decreased (0.161±0.02 vs. 0.224±0.02 ml/min). We observed autoimmune inflammation in CD73−/−mice with glomerulitis and peritubular capillaritis, showing glomerular deposition of IgG and C3 and enhanced presence of CD11b, CD8, CD25 as well as GR-1-positive cells in the interstitium. Vascular inflammation was associated with enhanced serum levels of the cytokines IL-18 and TNF-α as well as VEGF and the chemokine MIP-2 (CXCL-2) in CD73−/−mice, whereas chemokines and cytokines in the kidney tissue were unaltered or reduced. In CD73−/−mice glomeruli, we found a reduced number of podocytes and endothelial fenestrations, increased capillaries per glomeruli, endotheliosis and enhanced tubular fibrosis. Our results show that adult CD73−/−mice exhibit spontaneous proteinuria and renal functional deterioration even without exogenous stress factors. We have identified an autoimmune inflammatory phenotype comprising the glomerular endothelium, leading to glomeruli inflammation and injury and to a cellular infiltrate of the renal interstitium. Thus, long term lack of CD73 reduced renal function and is associated with autoimmune inflammation

    MUC1 alters oncogenic events and transcription in human breast cancer cells

    Get PDF
    INTRODUCTION: MUC1 is an oncoprotein whose overexpression correlates with aggressiveness of tumors and poor survival of cancer patients. Many of the oncogenic effects of MUC1 are believed to occur through interaction of its cytoplasmic tail with signaling molecules. As expected for a protein with oncogenic functions, MUC1 is linked to regulation of proliferation, apoptosis, invasion, and transcription. METHODS: To clarify the role of MUC1 in cancer, we transfected two breast cancer cell lines (MDA-MB-468 and BT-20) with small interfering (si)RNA directed against MUC1 and analyzed transcriptional responses and oncogenic events (proliferation, apoptosis and invasion). RESULTS: Transcription of several genes was altered after transfection of MUC1 siRNA, including decreased MAP2K1 (MEK1), JUN, PDGFA, CDC25A, VEGF and ITGAV (integrin α(v)), and increased TNF, RAF1, and MMP2. Additional changes were seen at the protein level, such as increased expression of c-Myc, heightened phosphorylation of AKT, and decreased activation of MEK1/2 and ERK1/2. These were correlated with cellular events, as MUC1 siRNA in the MDA-MB-468 line decreased proliferation and invasion, and increased stress-induced apoptosis. Intriguingly, BT-20 cells displayed similar levels of apoptosis regardless of siRNA, and actually increased proliferation after MUC1 siRNA. CONCLUSION: These results further the growing knowledge of the role of MUC1 in transcription, and suggest that the regulation of MUC1 in breast cancer may be more complex than previously appreciated. The differences between these two cell lines emphasize the importance of understanding the context of cell-specific signaling events when analyzing the oncogenic functions of MUC1, and caution against generalizing the results of individual cell lines without adequate confirmation in intact biological systems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016

    Get PDF
    The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore