27,202 research outputs found

    New e-Learning system architecture based on knowledge engineering technology

    Get PDF
    The paper focuses on the field of research on next generational e-Learning facility, in which knowledge-enhanced systems are the most important candidates. In the paper, a reference architecture based on the technologies of knowledge engineering is proposed, which has following three intrinsic characteristics, first, education ontologies are used to facilitate the integration of static learning resource and dynamic learning resource, second, based on semantic-enriched relationships between Learning Objects (LOs), it provides more advanced features for sharing, reusing and repurposing of LOs, third, with the concept of knowledge object, which is extended from LO, an implementing mechanism for knowledge extraction and knowledge evolution in e-Learning facilities is provided. With this reference architecture, a prototype system called FekLoma (Flexible Extensive Knowledge Learning Object Management Architecture) has been realized, and testing on it is carrying out

    Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators

    Get PDF
    By combining a solid-state photoreaction model with the modal solutions of an optical waveguide, we simulate the refractive index change due to the photobleaching of CLD-1 chromophores in an amorphous polycarbonate microring resonator. The simulation agrees well with experimental results. The photobleaching quantum efficiency of the CLD-1 chromophores is determined to be 0.65%. The combined modeling of the electromagnetic wave propagation and photoreaction precisely illustrates the spatial and temporal evolution of the optical properties of the polymer material as manifested in the refractive index and their effects on the modal and physical properties of the optical devices

    Stress Tensors of Multiparticle Collision Dynamics Fluids

    Full text link
    Stress tensors are derived for the multiparticle collision dynamics algorithm, a particle-based mesoscale simulation method for fluctuating fluids, resembling those of atomistic or molecular systems. Systems with periodic boundary conditions as well as fluids confined in a slit are considered. For every case, two equivalent expressions for the tensor are provided, the internal stress tensor, which involves all degrees of freedom of a system, and the external stress, which only includes the interactions with the confining surfaces. In addition, stress tensors for a system with embedded particles are determined. Based on the derived stress tensors, analytical expressions are calculated for the shear viscosity. Simulations illustrate the difference in fluctuations between the various derived expressions and yield very good agreement between the numerical results and the analytically derived expression for the viscosity

    A Study of Anyon Statistics by Breit Hamiltonian Formalism

    Get PDF
    We study the anyon statistics of a 2+12 + 1 dimensional Maxwell-Chern-Simons (MCS) gauge theory by using a systemmetic metheod, the Breit Hamiltonian formalism.Comment: 25 pages, LATE

    Experimental investigation on spray, evaporation and combustion characteristics of ethanol-diesel, water-emulsified diesel and neat diesel fuels

    Full text link
    © 2018 This paper explored the spray and combustion characteristics of ethanol-diesel (E10), water-emulsified diesel (W10) and neat diesel (D100), especially micro-explosion of E10 and W10. The experiments were conducted in a constant volume combustion chamber under cold (383 K, 0% O2), evaporating (900 K, 0% O2) and combustion (900 K, 21% O2) conditions. Results showed that the spray expansion capacities of E10 and W10 under cold condition were much weaker than that of D100 due to the larger viscosity of emulsified diesels. Under evaporating condition, the spray volume of E10, W10 and D100 increased by 59%, 34% and 21% respectively comparing with cold spray volume. The higher increasing rates of E10 and W10 were mainly due to the micro-explosion effects of ethanol and water contents. Under combustion condition, the integrated natural flame luminosity (INFL) demonstrated that the ethanol content could accelerate the oxidation of soot, while the water content could prohibit soot generation. Therefore, both ethanol- and water-emulsified diesels could inhibit the soot emission, causing lower final residual soot emission of E10 and W10 than that of D100 by 21% and 39% respectively. Moreover, the flame lift-off length (LOL) and flame spread velocity showed that the effects of micro-explosion in E10 and W10 are different. The micro-explosion in ethanol occurred earlier, which enhanced the reaction rate in upstream flame and reduced the LOL. However, the micro-explosion in W10 occurred later, which enhanced the combustion rate in downstream flame

    Probing semiclassical magneto-oscillations in the low-field quantum Hall effect

    Full text link
    The low-field quantum Hall effect is investigated on a two-dimensional electron system in an AlGaAs/GaAs heterostructure. Magneto-oscillations following the semiclassical Shubnikov-de Haas formula are observed even when the emergence of the mobility gap shows the importance of quantum localization effects. Moreover, the Lifshitz-Kosevich formula can survive as the oscillating amplitude becomes large enough for the deviation to the Dingle factor. The crossover from the semiclassical transport to the description of quantum diffusion is discussed. From our study, the difference between the mobility and cyclotron gaps indicates that some electron states away from the Landau-band tails can be responsible for the semiclassical behaviors under low-field Landau quantization.Comment: 14 pages, 6 figure

    Evaporation and ignition characteristics of water emulsified diesel under conventional and low temperature combustion conditions

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The combination of emulsified diesel and low temperature combustion (LTC) technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD) of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL) reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines
    • 

    corecore