143 research outputs found

    Study on Stability and Control of Pre-excavated Withdrawal Channel under Mining Influence

    Get PDF
    AbstractPre-excavated withdrawal channel (PWC) is an effective means to shorten the withdrawal time of fully mechanized working face and improve the efficiency, safety, and reliability during the withdrawal. However, the key to the success of the withdrawal method is the influence of mining on the stability of PWC, taking the III32upper1 working face of Zhuzhuang Coal Mine as the engineering background. By theoretical analysis and numerical simulation, the deformation of the PWC is analyzed and the mechanical model of the influence of the instability of the main roof fracture on the PWC is established. And the effect of the fracture and rotation of the main roof on the PWC is analyzed. The result shows that the instability of the coal pillar leads to the fracture and rotary deformation of the main roof as the width of the coal pillar gradually decreases, which further aggravates the deformation of the PWC and the degree of ground pressure behavior. Based on the influence of mining on the PWC, a control method is proposed. This method uses hydraulic fracturing technology to weaken the mining stress and prevent the fracture of the main roof above the PWC. The control effect of hydraulic fracturing on PWC is analyzed through the establishment of numerical calculation model. The result of engineering practice demonstrates that the mining stress is significantly reduced, and the deformation of surrounding rock in the PWC is effectively controlled after hydraulic fracturing

    A genome-wide association study based on the China Kadoorie Biobank identifies genetic associations between snoring and cardiometabolic traits

    Get PDF
    Despite the high prevalence of snoring in Asia, little is known about the genetic etiology of snoring and its causal relationships with cardiometabolic traits. Based on 100,626 Chinese individuals, a genome-wide association study on snoring was conducted. Four novel loci were identified for snoring traits mapped on SLC25A21, the intergenic region of WDR11 and FGFR, NAA25, ALDH2, and VTI1A, respectively. The novel loci highlighted the roles of structural abnormality of the upper airway and craniofacial region and dysfunction of metabolic and transport systems in the development of snoring. In the two-sample bi-directional Mendelian randomization analysis, higher body mass index, weight, and elevated blood pressure were causal for snoring, and a reverse causal effect was observed between snoring and diastolic blood pressure. Altogether, our results revealed the possible etiology of snoring in China and indicated that managing cardiometabolic health was essential to snoring prevention, and hypertension should be considered among snorers

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index

    Get PDF
    Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index (BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a meta-analysis of associations between BMI and ∼2.5 million genotyped or imputed single nucleotide polymorphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among 7488–47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the KCNQ1 (rs2237892, P = 9.29 × 10−13), ALDH2/MYL2 (rs671, P = 3.40 × 10−11; rs12229654, P = 4.56 × 10−9), ITIH4 (rs2535633, P = 1.77 × 10−10) and NT5C2 (rs11191580, P = 3.83 × 10−8) genes. The association of BMI with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51 BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at the genome-wide significance level (P < 5.0 × 10−8) and an additional 14 at P < 1.0 × 10−3 with the same direction of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis of obesity

    Theoretical Study on the Mechanism of Asymmetrical Large Deformation of Heading Roadway Facing Mining

    No full text
    The problem of asymmetric large deformation of surrounding rock of heading roadways is prominent due to the superposition of mining stress in the mining intersection area. Therefore, on the basis of the background of 18,106 tailentry in the Xiegou Coal Mine, this paper establishes a mechanical model of surrounding rock deformation of mining roadways under the effect of advanced abutment pressure. In the model, we deduce the theoretical calculation formula of roadway full-section deformation and discuss the influence factors of roadway surrounding rock deformation. Accordingly, the deformation mechanism of surrounding rock of mining roadways and the engineering suggestions and measures are revealed. The main results and finding are threefold. Firstly, the increase of the stress concentration factor of the coal pillar rib and the increase of the width of the failure zone are the fundamental reasons leading to the aggravation of the surrounding rock deformation on the side of the coal pillar in the heading roadway. Secondly, the deformation of the coal pillar rib increases with the increase of stress concentration factor and decreases with the increase of coal cohesion, internal friction angle, elastic modulus, and roadway rib support resistance. Additionally, the deformation of the roadway roof and floor decreases with the increase of roadway rib support resistance and is inversely proportional to the cubic power of rock beam thickness and elastic modulus. The deformation rate of the roadway roof and floor increases with the increase of vertical stress concentration factor of the coal pillar rib, and the maximum deformation position shifts to the side of the coal pillar. Therefore, increasing the strength and stiffness of the roadway surrounding rock and the supporting resistance of surrounding rock can reduce the deformation of roadway surrounding rock and the influence of advanced abutment pressure on roadway deformation. In the end, the rationality and feasibility of the theoretical analysis is verified through an engineering example. Under the influence of advanced abutment pressure, the deformation of roadway floor heave is the most severe, the asymmetrical deformation on both sides of the roadway is remarkable, and the deformation of coal pillar side is about twice that of solid coal side
    • …
    corecore