2,756 research outputs found

    OsB9 −: An Aromatic Osmium-Centered Monocyclic Boron Ring

    Get PDF
    Transition-metal-centered monocyclic boron wheels are important candidates in the family of planar hypercoordinate species that show intriguing structure, stability and bonding situation. Through the detailed potential energy surface explorations of MB9 − (M Fe, Ru, Os) clusters, we introduce herein OsB9 − to be a new member in the transition-metalcentered borometallic molecular wheel gallery. Previously, FeB9 − and RuB9 − clusters were detected by photoelectron spectroscopy and the structures were reported to have singlet D9h symmetry. Our present results show that the global minimum for FeB9 − has a molecular wheel-like structure in triplet spin state with Cs symmetry, whereas its heavier homologues are singlet molecular wheels with D9h symmetry. Chemical bonding analyses show that RuB9 − and OsB9 − display a similar type of electronic structure, where the dual σ + π aromaticity, originated from three delocalized σ bonds and three delocalized π bonds, accounts for highly stable borometallic molecular wheels

    Host-guest Interaction at Molecular Interfaces: Binding of Cucurbit[7]uril on Ferrocenyl Self-assembled Monolayers on Gold

    Get PDF
    Ferrocene (Fc) encapsulated cucurbit[7]uril (CB[7]) supramolecular host-guest complex  (Fc@CB[7]) as a synthetic recognition pair has been widely adapted for coupling biomolecules and nanomaterials due to its ultra-high binding affinity. In this paper, we have explored the binding of CB[7] on binary ferrocenylundecanethiolate/octanethiolate self-assembled monolayer on gold  (FcC11S-/C8S-Au), a model system to deepen our understanding of host-guest chemistry at molecular interfaces. It has been shown that upon incubation with CB[7] solution, the redox behavior FcC11S-/C8S-Au changes remarkably, i.e., a new pair of peaks appeared at more positive potential with narrowed widths. The ease of quantitation of surface bound-redox species (Fc+/Fc and  Fc+@CB[7]/ Fc@CB[7]) enabled us to determine the thermodynamic formation constant of  Fc@CB[7] at FcC11S-/C8S-Au (7.3±1.8 × 104 M-1). With time-dependent redox responses, we were able to, for the first time, deduce both the binding and dissociation rate constants, 2.8±0.3 × 103  M-1s-1 and 0.08±0.01 s-1, respectively. These results showed substantial differences both thermodynamically and kinetically for the formation of host-guest inclusion complex at molecular interfaces with respect to solution-diffused, homogenous environments

    Superhydrophobic Substrates from Off-The-Shelf Laboratory Filter Paper: Simplified Preparation, Patterning, and Assay Application

    Get PDF
    Off-the-shelf laboratory filter paper of different pore-sizes and thicknesses can be modified with fluorine-free organosilanes to be superhydrophobic, patternable, and ready for quantitative assay applications. In particular, we have demonstrated that cellulose filter paper treated with a binary hexane solution of short (methyltrichlorosilane, MTS) and long (octadecyltrichlorosilane, OTS) organosilanes, exhibits remarkably high water contact angles (> 150 °) and low wetting hysteresis (~10 °). Beyond the optimized ratio between the two organosilanes, we have discovered that the thickness rather than the pore size dictates the resulting superhydrophobicity. Scanning electron microscope (SEM) images showed that silianization does not damage the cellulose microfibers; instead they are coated with uniform, particulate nanostructures, which should contribute to the observed surface properties. The modified filter paper is chemically stable and mechanically durable; it can be readily patterned with UV/ozone treatment to create hydrophilic regions to prepare chemical assays for colorimetric pH and nitrite detections

    Identification of key bioactive anti-migraine constituents of Asari radix et rhizoma using network pharmacology and nitroglycerin-induced migraine rat model

    Get PDF
    Purpose: To elucidate the bioactive constituents of Asari radix et rhizoma (ARR) in treating migraine based on network pharmacology and nitroglycerin-induced migraine rat model. Methods: The potential bioactive constituents of ARR were identified with the aid of literature retrieval and virtual screening, and the migraine-related hub genes were identified using protein-protein interaction and topology analyses. Then, the interaction between the potential bioactive constituents and hub genes was determined with molecular docking and topology, leading to the prediction of the anti-migraine constituents of ARR. Moreover, a rat model of nitroglycerin-induced migraine was used to confirm the prediction by measuring the frequency of head-scratching and head-shaking behavior (FHHB) in the rats. In addition, levels of nitric oxide (NO) and calcitonin gene-related peptide (CGRP) in blood, norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in brain were measured using appropriate commercial kits. Results: Network pharmacology revealed that naringenin-7-O-β-D-glucopyranoside and higenamine might be the key anti-migraine bioactive constituents of ARR. On addition of naringenin-7-O-β-D- glucopyranoside or higenamine to ARR, there was marked enhancement of the mitigating effect of ARR on nitroglycerin-induced abnormalities in levels of NO, CGRP, 5-HT and NE, as well as FHHB in rats (p < 0.05 or 0.01). Conclusion: These findings indicate that naringenin-7-O-β-D-glucopyranoside and higenamine might be the key bioactive and anti-migraine constituents of ARR. However, in addition to naringenin-7-O-β-D- glucopyranoside and higenamine, there were many other anti-migraine constituents in ARR. Therefore, there is need for further investigations on the actual contributions of these two constituents of ARR in treating migraine
    • …
    corecore