339 research outputs found
Vibrational Energy Levels of the Simplest Criegee Intermediate (CH₂OO) from Full-dimensional Lanczos, MCTDH, and MULTIMODE Calculations
Accurate vibrational energy levels of the simplest Criegee intermediate (CH2OO) were determined on a recently developed ab initio based nine-dimensional potential energy surface using three quantum mechanical methods. the first is the iterative Lanczos method using a conventional basis expansion with an exact Hamiltonian. the second and more efficient method is the multi-configurational time-dependent Hartree (MCTDH) method in which the potential energy surface is refit to conform to the sums-of-products requirement of MCTDH. Finally, the energy levels were computed with a vibrational self-consistent field/virtual configuration interaction method in MULTIMODE. the low-lying levels obtained from the three methods are found to be within a few wave numbers of each other, although some larger discrepancies exist at higher levels. the calculated vibrational levels are very well represented by an anharmonic effective Hamiltonian
Regulation of neuregulin-mediated acetylcholine receptor synthesis by protein tyrosine phosphatase SHP2
Synapse-specific expression of the nicotinic acetylcholine receptor (AChR) is believed to be mediated by neuregulin, an epidermal growth factor-like trophic factor released by somatic motoneurons at the neuromuscular junction (NMJ). Neuregulin stimulates ErbB2, ErbB3, and ErbB4, members of the ErbB family of receptor tyrosine kinases. SHP2 is a cytoplasmic protein tyrosine phosphatase containing two Src homology 2 domains near its N terminus, and has been shown to be a positive mediator of mitogenic responses to various growth factors. We found that SHP2 interacted with ErbB2 and ErbB3 after neuregulin stimulation of muscle cells. Expression of SHP2 in C2C12 mouse muscle cells attenuated the neuregulin-induced expression of an AChR epsilon-promoter reporter gene, whereas a catalytically inactive SHP2 mutant or a mutant lacking the N-terminal Src homology 2 (SH2) domain enhanced reporter expression, suggesting that SHP2 negatively regulates the neuregulin signaling pathway. In fibroblast cells that express a mutant SHP2 with a targeted deletion of the N-terminal SH2 domain, neuregulin-mediated activation of the Ras/Raf/extracellular signal-regulated kinase cascade was enhanced. Furthermore, we found that SHP2 immunoreactivity colocalized with the staining of alpha-bungarotoxin, a marker of the NMJ. These results demonstrate a negative role of SHP2 in the neuregulin signal that leads to AChR gene expression at the NMJ
Therapeutic effect of Rho kinase inhibitor FSD-C10 in a mouse model of Alzheimer\u27s disease.
Fasudil, a Rho kinase (ROCK) inhibitor, effectively inhibits disease severity in a mouse model of Alzheimer\u27s disease (AD). However, given its significant limitations, including a relatively narrow safety window and poor oral bioavailability, Fasudil is not suitable for long-term use. Thus, screening for ROCK inhibitor(s) that are more efficient, safer, can be used orally and suitable for long-term use in the treatment of neurodegenerative disorders is required. The main purpose of the present study is to explore whether FSD-C10, a novel ROCK inhibitor, has therapeutic potential in amyloid precursor protein/presenilin-1 transgenic (APP/PS1 Tg) mice, and to determine possible mechanisms of its action. The results showed that FSD-C10 effectively improved learning and memory impairment, accompanied by reduced expression of amyloid-β1-42 (Aβ 1-42 ), Tau protein phosphorylation (P-tau) and β-site APP-cleaving enzyme in the hippocampus and cortex area of brain. In addition, FSD-C10 administration boosted the expression of synapse-associated proteins, such as postynaptic density protein 95, synaptophsin, α-amino 3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor and neurotrophic factors, e,g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Taken together, our results demonstrate that FSD-C10 has therapeutic potential in the AD mouse model, possibly through inhibiting the formation of Aβ 1-42 and P-tau, and promoting the generation of synapse-associated proteins and neurotrophic factors
The Shenzhen Declaration on Plant Sciences – Uniting plant sciences and society to build a green, sustainable Earth
© 2017 Shenzhen Declaration Drafting Committee. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The file attached is the Published/publisher’s pdf version of the article
Testing and Data Reduction of the Chinese Small Telescope Array (CSTAR) for Dome A, Antarctica
The Chinese Small Telescope ARray (hereinafter CSTAR) is the first Chinese
astronomical instrument on the Antarctic ice cap. The low temperature and low
pressure testing of the data acquisition system was carried out in a laboratory
refrigerator and on the 4500m Pamirs high plateau, respectively. The results
from the final four nights of test observations demonstrated that CSTAR was
ready for operation at Dome A, Antarctica. In this paper we present a
description of CSTAR and the performance derived from the test observations.Comment: Accepted Research in Astronomy and Astrophysics (RAA) 1 Latex file
and 20 figure
Recommended from our members
Effects of ATPM-ET, a novel κ agonist with partial μ activity, on physical dependence and behavior sensitization in mice
Aim: To investigate the effects of ATPM-ET [(−)-3-N-Ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] on physical dependence and behavioral sensitization to morphine in mice. Methods: The pharmacological profile of ATPM-ET was characterized using competitive binding and GTPγS binding assays. We then examined the antinociceptive effects of ATPM-ET in the hot plate test. Morphine dependence assay and behavioral sensitization assay were used to determine the effect of ATPM-ET on physical dependence and behavior sensitization to morphine in mice. Results: The binding assay indicated that ATPM-ET ATPM-ET exhibited a high affinity to both κ- and μ-opioid receptors with Ki values of 0.15 nmol/L and 4.7 nmol/L, respectively, indicating it was a full κ-opioid receptor agonist and a partial μ-opioid receptor agonist. In the hot plate test, ATPM-ET produced a dose-dependent antinociceptive effect, with an ED50 value of 2.68 (2.34–3.07) mg/kg. Administration of ATPM-ET (1 and 2 mg/kg, sc) prior to naloxone (3.0 mg/kg, sc) injection significantly inhibited withdrawal jumping of mice. In addition, ATPM-ET (1 and 2 mg/kg, sc) also showed a trend toward decreasing morphine withdrawal-induced weight loss. ATPM-ET (1.5 and 3 mg/kg, sc) 15 min before the morphine challenge significantly inhibited the morphine-induced behavior sensitization (P<0.05). Conclusion: ATPM-ET may have potential as a therapeutic agent for the treatment of drug abuse
FSD-C10: A more promising novel ROCK inhibitor than Fasudil for treatment of CNS autoimmunity.
Rho-Rho kinase (Rho-ROCK) triggers an intracellular signalling cascade that regulates cell survival, death, adhesion, migration, neurite outgrowth and retraction and influences the generation and development of several neurological disorders. Although Fasudil, a ROCK inhibitor, effectively suppressed encephalomyelitis (EAE), certain side effects may limit its clinical use. A novel and efficient ROCK inhibitor, FSD-C10, has been explored. In the present study, we present chemical synthesis and structure of FSD-C10, as well as the relationship between compound concentration and ROCK inhibition. We compared the inhibitory efficiency of ROCKI and ROCK II, the cell cytotoxicity, neurite outgrowth and dendritic formation, neurotrophic factors and vasodilation between Fasudil and FSD-C10. The results demonstrated that FSD-C10, like Fasudil, induced neurite outgrowth of neurons and dendritic formation of BV-2 microglia and enhanced the production of neurotrophic factor brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3). However, the cell cytotoxicity and vasodilation of FSD-C10 were relatively small compared with Fasudil. Although Fasudil inhibited both ROCK I and ROCK II, FSD-C10 more selectively suppressed ROCK II, but not ROCK I, which may be related to vasodilation insensitivity and animal mortality. Thus, FSD-C10 may be a safer and more promising novel ROCK inhibitor than Fasudil for the treatment of several neurological disorders
Effects of Tai Chi versus Proprioception Exercise Program on Neuromuscular Function of the Ankle in Elderly People: A Randomized Controlled Trial
Background. Tai Chi is a traditional Chinese medicine exercise used for improving neuromuscular function. This study aimed to investigate the effects of Tai Chi versus proprioception exercise program on neuromuscular function of the ankle in elderly people. Methods. Sixty elderly subjects were randomly allocated into three groups of 20 subjects per group. For 16 consecutive weeks, subjects participated in Tai Chi, proprioception exercise, or no structured exercise. Primary outcome measures included joint position sense and muscle strength of ankle. Subjects completed a satisfaction questionnaire upon study completion in Tai Chi and proprioception groups. Results. (1) Both Tai Chi group and proprioception exercise group were significantly better than control group in joint position sense of ankle, and there were no significant differences in joint position sense of ankle between TC group and PE group. (2) There were no significant differences in muscle strength of ankle among groups. (3) Subjects expressed more satisfaction with Tai Chi than with proprioception exercise program. Conclusions. None of the outcome measures on neuromuscular function at the ankle showed significant change posttraining in the two structured exercise groups. However, the subjects expressed more interest in and satisfaction with Tai Chi than proprioception exercise
The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys
We present new quasars discovered in the vicinity of the Andromeda and
Triangulum galaxies with the LAMOST during the 2010 and 2011 observational
seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m
telescope, XSTPS optical, and WISE near infrared photometric data. We present
509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along
the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new
quasars discovered in an area of ~100 sq. deg that covers the central region
and the southeastern halo of M31 in the 2010 commissioning datasets. These 526
new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to
3.2. They represent a significant increase of the number of identified quasars
in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in
this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0
respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars
provide an invaluable collection with which to probe the kinematics and
chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars
are now known with locations within 2.5 deg of M31, of which 73 are newly
discovered. Tens of quasars are now known to be located behind the Giant
Stellar Stream, and hundreds behind the extended halo and its associated
substructures of M31. The much enlarged sample of known quasars in the vicinity
of M31 and M33 can potentially be utilized to construct a perfect astrometric
reference frame to measure the minute PMs of M31 and M33, along with the PMs of
substructures associated with the Local Group of galaxies. Those PMs are some
of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte
The Cymbidium genome reveals the evolution of unique morphological traits
The marvelously diverse Orchidaceae constitutes the largest family of angiosperms. The genus Cymbidium in
Orchidaceae is well known for its unique vegetation, floral morphology, and flower scent traits. Here, a chromosomescale
assembly of the genome of Cymbidium ensifolium (Jianlan) is presented. Comparative genomic analysis showed
that C. ensifolium has experienced two whole-genome duplication (WGD) events, the most recent of which was shared
by all orchids, while the older event was the τ event shared by most monocots. The results of MADS-box genes
analysis provided support for establishing a unique gene model of orchid flower development regulation, and flower
shape mutations in C. ensifolium were shown to be associated with the abnormal expression of MADS-box genes. The
most abundant floral scent components identified included methyl jasmonate, acacia alcohol and linalool, and the
genes involved in the floral scent component network of C. ensifolium were determined. Furthermore, the decreased
expression of photosynthesis-antennae and photosynthesis metabolic pathway genes in leaves was shown to result in
colorful striped leaves, while the increased expression of MADS-box genes in leaves led to perianth-like leaves. Our
results provide fundamental insights into orchid evolution and diversification.The National Key Research and Development Program of China, the National Natural Science Foundation of China, the Outstanding Young Scientific Research Talent Project of Fujian Agriculture and Forestry University, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization Construction Funds, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program.https://www.nature.com/hortresam2022BiochemistryGeneticsMicrobiology and Plant Patholog
- …