1,588 research outputs found
Aryl hydrocarbon receptor nuclear translocator (ARNT) gene as a positional and functional candidate for type 2 diabetes and prediabetic intermediate traits: Mutation detection, case-control studies, and gene expression analysis
<p>Abstract</p> <p>Background</p> <p>ARNT, a member of the basic helix-loop-helix family of transcription factors, is located on human chromosome 1q21–q24, a region which showed well replicated linkage to type 2 diabetes. We hypothesized that common polymorphisms in the <it>ARNT </it>gene might increase the susceptibility to type 2 diabetes through impaired glucose-stimulated insulin secretion.</p> <p>Methods</p> <p>We selected 9 single nucleotide polymorphisms to tag common variation across the <it>ARNT </it>gene. Additionally we searched for novel variants in functional coding domains in European American and African American samples. Case-control studies were performed in 191 European American individuals with type 2 diabetes and 187 nondiabetic European American control individuals, and in 372 African American individuals with type 2 diabetes and 194 African American control individuals. Metabolic effects of <it>ARNT </it>variants were examined in 122 members of 26 European American families from Utah and in 225 unrelated individuals from Arkansas. Gene expression was tested in 8 sibling pairs discordant for type 2 diabetes.</p> <p>Results</p> <p>No nonsynonymous variants or novel polymorphisms were identified. No SNP was associated with type 2 diabetes in either African Americans or European Americans, but among nondiabetic European American individuals, <it>ARNT </it>SNPs rs188970 and rs11204735 were associated with acute insulin response (AIR<sub>g</sub>; p =< 0.005). SNP rs2134688 interacted with body mass index to alter β-cell compensation to insulin resistance (disposition index; p = 0.004). No significant difference in <it>ARNT </it>mRNA levels was observed in transformed lymphocytes from sibling pairs discordant for type 2 diabetes.</p> <p>Conclusion</p> <p>Common <it>ARNT </it>variants are unlikely to explain the linkage signal on chromosome 1q, but may alter insulin secretion in nondiabetic subjects. Our studies cannot exclude a role for rare variants or variants of small (< 1.6) effect size.</p
The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al
Pathological and ecological host consequences of infection by an introduced fish parasite
The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ15N and δ13C) revealed trophic impacts associated with infection, particularly for δ15N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ15N and δ13C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s−1) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite
Treatment of two postoperative endophthalmitis cases due to Aspergillus flavus and Scopulariopsis spp. with local and systemic antifungal therapy
<p>Abstract</p> <p>Background</p> <p>Endophthalmitis is the inflammatory response to invasion of the eye with bacteria or fungi. The incidence of endophthalmitis after cataract surgery varies between 0.072–0.13 percent. Treatment of endophthalmitis with fungal etiology is difficult.</p> <p>Case Presentation</p> <p><b>Case 1: </b>A 71-year old male diabetic patient developed postoperative endophthalmitis due to <it>Aspergillus flavus</it>. The patient was treated with topical amphotericin B ophthalmic solution, intravenous (IV) liposomal amphotericin-B and caspofungin following vitrectomy.</p> <p><b>Case 2: </b>A 72-year old male cachectic patient developed postoperative endophthalmitis due to <it>Scopulariopsis </it>spp. The patient was treated with topical and IV voriconazole and caspofungin.</p> <p>Conclusion</p> <p><it>Aspergillus </it>spp. are responsible of postoperative fungal endophthalmitis. Endophthalmitis caused by <it>Scopulariopsis </it>spp. is a very rare condition. The two cases were successfully treated with local and systemic antifungal therapy.</p
Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells
<p>Abstract</p> <p>Background</p> <p>Cancer stem cells (CSCs) play an important role in the development and recurrence of malignant tumors including glioma. Notch signaling, an evolutionarily conserved pathway mediating direct cell-cell interaction, has been shown to regulate neural stem cells (NSCs) and glioma stem cells (GSCs) in normal neurogenesis and pathological carcinogenesis, respectively. However, how Notch signaling regulates the proliferation and differentiation of GSCs has not been well elucidated.</p> <p>Methods</p> <p>We isolated and cultivate human GSCs from glioma patient specimens. Then on parallel comparison with NSCs, we inhibited Notch signaling using γ-secretase inhibitors (GSI) and assessed the potential functions of Notch signaling in human GSCs.</p> <p>Results</p> <p>Similar to the GSI-treated NSCs, the number of the primary and secondary tumor spheres from GSI-treated GSCs decreased significantly, suggesting that the proliferation and self-renewal ability of GSI-treated GSCs were attenuated. GSI-treated GSCs showed increased differentiation into mature neural cell types in differentiation medium, similar to GSI-treated NSCs. Next, we found that GSI-treated tumor spheres were composed of more intermediate progenitors instead of CSCs, compared with the controls. Interestingly, although inhibition of Notch signaling decreased the ratio of proliferating NSCs in long term culture, we found that the ratio of G2+M phase-GSCs were almost undisturbed on GSI treatment within 72 h.</p> <p>Conclusions</p> <p>These data indicate that like NSCs, Notch signaling maintains the patient-derived GSCs by promoting their self-renewal and inhibiting their differentiation, and support that Notch signal inhibitor GSI might be a prosperous candidate of the treatment targeting CSCs for gliomas, however, with GSI-resistance at the early stage of GSCs cell cycle.</p
Characterization of the Interaction and Cross-Regulation of Three Mycobacterium tuberculosis RelBE Modules
RelBE represents a typical bacterial toxin-antitoxin (TA) system. Mycobacterium tuberculosis H37Rv, the pathogen responsible for human tuberculosis, contains three RelBE-like modules, RelBE, RelFG, and RelJK, which are at least partly expressed in human macrophages during infection. RelBE modules appear to be autoregulated in an atypical manner compared to other TA systems; however, the molecular mechanisms and potential interactions between different RelBE modules remain to be elucidated. In the present study, we characterized the interaction and cross-regulation of these Rel toxin-antitoxin modules from this unique pathogen. The physical interactions between the three pairs of RelBE proteins were confirmed and the DNA-binding domain recognized by three RelBE-like pairs and domain structure characteristics were described. The three RelE-like proteins physically interacted with the same RelB-like protein, and could conditionally regulate its binding with promoter DNA. The RelBE-like modules exerted complex cross-regulation effects on mycobacterial growth. The relB antitoxin gene could replace relF in cross-neutralizing the relG toxin gene. Conversely, relF enhanced the toxicity of the relE toxin gene, while relB increased the toxicity of relK. This is the first report of interactions between different pairs of RelBE modules of M. tuberculosis
The prognostic value of nestin expression in newly diagnosed glioblastoma: Report from the Radiation Therapy Oncology Group
<p>Abstract</p> <p>Background</p> <p>Nestin is an intermediate filament protein that has been implicated in early stages of neuronal lineage commitment. Based on the heterogeneous expression of nestin in GBM and its potential to serve as a marker for a dedifferentiated, and perhaps more aggressive phenotype, the Radiation Therapy Oncology Group (RTOG) sought to determine the prognostic value of nestin expression in newly diagnosed GBM patients treated on prior prospective RTOG clinical trials.</p> <p>Methods</p> <p>Tissue microarrays were prepared from 156 patients enrolled in these trials. These specimens were stained using a mouse monoclonal antibody specific for nestin and expression was measured by computerized quantitative image analysis using the Ariol SL-50 system. The parameters measured included both staining intensity and the relative area of expression within a specimen. This resulted into 3 categories: low, intermediate, and high nestin expression, which was then correlated with clinical outcome.</p> <p>Results</p> <p>A total of 153 of the 156 samples were evaluable for this study. There were no statistically significant differences between pretreatment patient characteristics and nestin expression. There was no statistically significant difference in either overall survival or progression-free survival (PFS) demonstrated, although a trend in decreased PFS was observed with high nestin expression (p = 0.06).</p> <p>Conclusion</p> <p>Although the correlation of nestin expression and histologic grade in glioma is of considerable interest, the presented data does not support its prognostic value in newly diagnosed GBM. Further studies evaluating nestin expression may be more informative when studied in lower grade glioma, in the context of markers more specific to tumor stem cells, and using more recent specimens from patients treated with temozolomide in conjunction with radiation.</p
Recommended from our members
Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design
Heterosis refers to the phenomenon in which an F1 hybrid exhibits enhanced growth or agronomic performance. However, previous theoretical studies on heterosis have
been based on bi-parental segregating populations instead of F1 hybrids. To understand the genetic basis of heterosis, here we used a subset of F1 hybrids, named a partial North Carolina II design, to perform association mapping for dependent variables: original trait value, general combining ability (GCA), specific combining ability (SCA) and mid-parental heterosis (MPH). Our models jointly fitted all the additive, dominance and epistatic effects. The analyses resulted in several important findings: 1) Main components are additive and
additive-by-additive effects for GCA and dominance-related effects for SCA and MPH, and additive-by-dominant effect for MPH was partly identified as additive
effect; 2) the ranking of factors affecting heterosis was dominance > dominance-by-dominance > over-dominance > complete dominance; and 3) increasing the proportion of F1 hybrids in the population could significantly increase the power to detect dominance-related effects, and slightly reduce the power to detect additive and additive-by-additive effects. Analyses of cotton and rapeseed datasets showed that more additive-by-additive QTL were detected from GCA than from trait phenotype, and fewer QTL were from MPH than from other dependent variables
Computational Identification and Analysis of the Key Biosorbent Characteristics for the Biosorption Process of Reactive Black 5 onto Fungal Biomass
The performances of nine biosorbents derived from dead fungal biomass were investigated for their ability to remove Reactive Black 5 from aqueous solution. The biosorption data for removal of Reactive Black 5 were readily modeled using the Langmuir adsorption isotherm. Kinetic analysis based on both pseudo-second-order and Weber-Morris models indicated intraparticle diffusion was the rate limiting step for biosorption of Reactive Black 5 on to the biosorbents. Sorption capacities of the biosorbents were not correlated with the initial biosorption rates. Sensitivity analysis of the factors affecting biosorption examined by an artificial neural network model showed that pH was the most important parameter, explaining 22%, followed by nitrogen content of biosorbents (16%), initial dye concentration (15%) and carbon content of biosorbents (10%). The biosorption capacities were not proportional to surface areas of the sorbents, but were instead influenced by their chemical element composition. The main functional groups contributing to dye sorption were amine, carboxylic, and alcohol moieties. The data further suggest that differences in carbon and nitrogen contents of biosorbents may be used as a selection index for identifying effective biosorbents from dead fungal biomass
- …