27,352 research outputs found

    Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury

    No full text
    BACKGROUND The development of hypersensitivity following spinal cord injury can result in incurable persistent neuropathic pain. Our objective was to examine the effect of red light therapy on the development of hypersensitivity and sensorimotor function, as well as on microglia/macrophage subpopulations following spinal cord injury. METHODS Wistar rats were treated (or sham treated) daily for 30 min with an LED red (670 nm) light source (35 mW/cm2), transcutaneously applied to the dorsal surface, following a mild T10 hemicontusion injury (or sham injury). The development of hypersensitivity was assessed and sensorimotor function established using locomotor recovery and electrophysiology of dorsal column pathways. Immunohistochemistry and TUNEL were performed to examine cellular changes in the spinal cord. RESULTS We demonstrate that red light penetrates through the entire rat spinal cord and significantly reduces signs of hypersensitivity following a mild T10 hemicontusion spinal cord injury. This is accompanied with improved dorsal column pathway functional integrity and locomotor recovery. The functional improvements were preceded by a significant reduction of dying (TUNEL+) cells and activated microglia/macrophages (ED1+) in the spinal cord. The remaining activated microglia/macrophages were predominantly of the anti-inflammatory/wound-healing subpopulation (Arginase1+ED1+) which were expressed early, and up to sevenfold greater than that found in sham-treated animals. CONCLUSIONS These findings demonstrate that a simple yet inexpensive treatment regime of red light reduces the development of hypersensitivity along with sensorimotor improvements following spinal cord injury and may therefore offer new hope for a currently treatment-resistant pain condition.This study was funded by the Gretel and Gordon Bootes Medical Research Foundation

    Instabilities at [110] Surfaces of d_{x^2-y^2} Superconductors

    Full text link
    We compare different scenarios for the low temperature splitting of the zero-energy peak in the local density of states at (110) surfaces of d_{x^2-y^2}-wave superconductors, observed by Covington et al. (Phys.Rev.Lett.79 (1997), 277). Using a tight binding model in the Bogolyubov-de Gennes treatment we find a surface phase transition towards a time-reversal symmetry breaking surface state carrying spontaneous currents and an s+id-wave state. Alternatively, we show that electron correlation leads to a surface phase transition towards a magnetic state corresponding to a local spin density wave state.Comment: 4 pages, 5 figure

    Shaready: A Resource-IsolatedWorkload Co-Location System

    Get PDF
    Over a decade, cloud and subsequent joint cloud computing has been evolving into one of biggest disruptive technologies in modern digital age. The rapidly maturing cloud service and system management still heavily relies on virtualization which underpins Infrastructure as a Service (IaaS) to offer on-demand and low-cost computing services. Nevertheless datacenters still suffer from low utilization and resource imbalance. IaaS systems and their workloads, as legacy estates, are intricate to be migrated or re-planned, thereby increasing the complexity of utilization improvement. Arguably workload co-location of long-running applications encapsulated in virtual machines and latency-insensitive batch jobs is an alternative to improve overall resource utilization. However, guaranteeing the quality of long-running services is still challenging. In this context, we proposed an isolation-based cluster resource sharing system Shaready to enable workload co-residences. By means of global resource quota configuration and multi-resource isolation, long-running services in virtual machines can be prioritized with maximized resource provisioning. We implemented and validated it based on Openstack and Yarn clusters, and experiments demonstrate that system CPU and memory utilization can be improved by roughly 50% and 16.67% respectively on average with at most 7% performance degradation

    Quantum Tunneling, Blackbody Spectrum and Non-Logarithmic Entropy Correction for Lovelock Black Holes

    Full text link
    We show, using the tunneling method, that Lovelock black holes Hawking radiate with a perfect blackbody spectrum. This is a new result. Within the semiclassical (WKB) approximation the temperature of the spectrum is given by the semiclassical Hawking temperature. Beyond the semiclassical approximation the thermal nature of the spectrum does not change but the temperature undergoes some higher order corrections. This is true for both black hole (event) and cosmological horizons. Using the first law of thermodynamics the black hole entropy is calculated. Specifically the DD-dimensional static, chargeless black hole solutions which are spherically symmetric and asymptotically flat, AdS or dS are considered. The interesting property of these black holes is that their semiclassical entropy does not obey the Bekenstein-Hawking area law. It is found that the leading correction to the semiclassical entropy for these black holes is not logarithmic and next to leading correction is also not inverse of horizon area. This is in contrast to the black holes in Einstein gravity. The modified result is due to the presence of Gauss-Bonnet term in the Lovelock Lagrangian. For the limit where the coupling constant of the Gauss-Bonnet term vanishes one recovers the known correctional terms as expected in Einstein gravity. Finally we relate the coefficient of the leading (non-logarithmic) correction with the trace anomaly of the stress tensor.Comment: minor modifications, two new references added, LaTeX, JHEP style, 34 pages, no figures, to appear in JHE

    Superconductivity induced by doping Platinum in BaFe2As2

    Full text link
    By substituting Fe with the 5d-transition metal Pt in BaFe2As2, we have successfully synthesized the superconductors BaFe2-xPtxAs2. The systematic evolution of the lattice constants indicates that the Fe ions were successfully replaced by Pt ions. By increasing the doping content of Pt, the antiferromagnetic order and structural transition of the parent phase is suppressed and superconductivity emerges at a doping level of about x = 0.02. At a doping level of x = 0.1, we get a maximum transition temperature Tc of about 25 K. The synchrotron powder x-ray diffraction shows that the resistivity anomaly is in good agreement with the structural transition. The superconducting transitions at different magnetic fields were also measured at the doping level of about x = 0.1, yielding a slope of -dHc2/dT = 5.4 T/K near Tc. A phase diagram was established for the Pt doped 122 system. Our results suggest that superconductivity can also be easily induced in the FeAs family by substituting the Fe with Pt, with almost the similar maximum transition temperatures as doping Ni, Co, Rh and Ir.Comment: 6 pages, 5 figure

    Pyrolysis of large mallee wood particles: Temperature gradients within a pyrolysing particle and effects of moisture content

    Get PDF
    Temperature profiles inside a large pyrolysing particle were studied and are reported in this paper. Mallee trunks of similar diameter from the same tree were used to prepare cylindrical samples with 40 mm length. A fluidised-bed reactor was used to pyrolyse the large particles. The temperature profiles inside the particles were recorded during pyrolysis to allow the calculation of corresponding heating rate profiles inside the particle. The effects of moisture were studied by pyrolysing some particles with 15 to 20% moisture content. The temperature profiles obtained from the pyrolysis of dry and wet samples have been compared to identify the possible effects of moisture on the temperature profiles. A possible change in the thermal conductivity of the wood was identified around 100 °C, which caused a peak in the heating rate profile. Some possible exothermic peaks were observed at around 325 °C and 425 °C. A peak in the heating rate profile at around 200 °C in the case of the pyrolysis of wet particles was believed to be related to the changed 3-D macromolecular structure of the biomass in the presence of moisture. Some yields of tar and char along with other analytical results were presented to support our observations on the temperature profiles. Our results indicate that moisture can potentially alter the overall pyrolysis reactions and product distribution, in particular through changes in the 3-D macromolecular structure of biomass

    Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors

    Get PDF
    A set of coupled time-dependent Ginzburg-Landau equations (TDGL) for superconductors of mixed d- and s-wave symmetry are derived microscopically from the Gor'kov equations by using the analytical continuation technique. The scattering effects due to impurities with both nonmagnetic and magnetic interactions are considered. We find that the d- and s-wave components of the order parameter can have very different relaxation times in the presence of nonmagnetic impurities. This result is contrary to a set of phenomenologically proposed TDGL equations and thus may lead to new physics in the dynamics of flux motion.Comment: 22 pages, 6 figures are available upon request, to appear in Phys. Rev.

    Multi-task multi-modality SVM for early COVID-19 Diagnosis using chest CT data

    Get PDF
    Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains activePublishe

    Diagnostics of the structure of AGN's broad line regions with reverberation mapping data: confirmation of the two-component broad line region model

    Full text link
    We re-examine the ten Reverberation Mapping (RM) sources with public data based on the two-component model of the Broad Line Region (BLR). In fitting their broad H-beta lines, six of them only need one Gaussian component, one of them has a double-peak profile, one has an irregular profile, and only two of them need two components, i.e., a Very Broad Gaussian Component (VBGC) and an Inter-Mediate Gaussian Component (IMGC). The Gaussian components are assumed to come from two distinct regions in the two-component model; they are Very Broad Line Region (VBLR) and Inter-Mediate Line region (IMLR). The two sources with a two-component profile are Mrk 509 and NGC 4051. The time lags of the two components of both sources satisfy tIMLR/tVBLR=VVBLR2/VIMLR2t_{IMLR}/t_{VBLR}=V^2_{VBLR}/V^2_{IMLR}, where tIMLRt_{IMLR} and tVBLRt_{VBLR} are the lags of the two components while VIMLRV_{IMLR} and VVBLRV_{VBLR} represent the mean gas velocities of the two regions, supporting the two-component model of the BLR of Active Galactic Nuclei (AGN). The fact that most of these ten sources only have the VBGC confirms the assumption that RM mainly measures the radius of the VBLR; consequently, the radius obtained from the R-L relationship mainly represent the radius of VBLR. Moreover, NGC 4051, with a lag of about 5 days in the one component model, is an outlier on the R-L relationship as shown in Kaspi et al. (2005); however this problem disappears in our two-component model with lags of about 2 and 6 days for the VBGC and IMGC, respectively.Comment: 7 pages, 5 figures. Accepted for publication in the Special Issue of Science in China (G) "Astrophysics of Black holes and Related Compact Objects
    • …
    corecore