
This is a repository copy of Shaready: A Resource-IsolatedWorkload Co-Location System.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/166906/

Version: Accepted Version

Proceedings Paper:
Xue, S, Hu, C, Zhu, J et al. (1 more author) (2019) Shaready: A Resource-
IsolatedWorkload Co-Location System. In: 2019 IEEE International Conference on 
Service-Oriented System Engineering (SOSE). 2019 IEEE International Conference on 
Service-Oriented System Engineering (SOSE), 04-09 Apr 2019, San Francisco East Bay, 
CA, USA. IEEE . ISBN 978-1-7281-1443-9 

https://doi.org/10.1109/sose.2019.00051

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/341797143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Shaready: a Resource-Isolated Workload Co-location System

Shiqing Xue12, Chunming Hu12, Jianyong Zhu12, Renyu Yang34∗

1SKLSDE Lab, Beihang University, China
2Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC), China

3School of Computing, University of Leeds, UK
4Edgetic Ltd., UK

{xuesq, hucm, zhujy}@act.buaa.edu.cn ; r.yang1@leeds.ac.uk

Abstract—Over a decade, cloud and subsequent joint cloud

computing has been evolving into one of biggest disruptive

technologies in modern digital age. The rapidly maturing

cloud service and system management still heavily relies on

virtualization which underpins Infrastructure as a Service

(IaaS) to offer on-demand and low-cost computing services.

Nevertheless datacenters still suffer from low utilization and

resource imbalance. IaaS systems and their workloads, as

legacy estates, are intricate to be migrated or re-planned,

thereby increasing the complexity of utilization improvement.

Arguably workload co-location of long-running applications

encapsulated in virtual machines and latency-insensitive batch

jobs is an alternative to improve overall resource utilization.

However, guaranteeing the quality of long-running services is

still challenging. In this context, we proposed an isolation-based

cluster resource sharing system Shaready to enable workload

co-residences. By means of global resource quota configuration

and multi-resource isolation, long-running services in virtual

machines can be prioritized with maximized resource provi-

sioning. We implemented and validated it based on Openstack

and Yarn clusters, and experiments demonstrate that system

CPU and memory utilization can be improved by roughly

50% and 16.67% respectively on average with at most 7%

performance degradation.

Index Terms—Cluster management, Co-location workloads,

Resource isolation, Quality of service

1. Introduction

The next generation of information technology repre-
sented by cloud computing and big data has become the
mainstream of today’s IT infrastructure. The rapid devel-
opment of cloud computing and big data has also become
the core growth driver of the new generation Internet data
center (IDC). At the same time, IDC’s virtualization-based
approach to resource allocation has many problems. Ama-
zon, one of the world’s largest cloud service providers,
pointed out in 2015 that cloud server clusters are mostly

. This work is supported by the National Key Research and Development
Program (2016YFB1000503) and NSFC(61421003). Renyu Yang is the
corresponding author

idle, resulting in an average physical utilization of clusters
below 20% [1]. Another study [2] observes that a fraction
of Amazon EC2 virtual machines (VMs) show an average
CPU utilization of 7% over one week. To improve resource
utilization, data centers co-locate different workloads and
it has become a common practice [3] [4]. Long-running
services in virtual machines have high quality of service
requirements. So we are willing to use workload co-location
technique to improve resource utilization whilst guanrantee
QoS of long-running services in the shared cluster.

In this paper we propose Shaready, a resource-isolated
workload co-location system. An improved resource utiliza-
tion is fulfilled by co-locating batch jobs, while QoS of long-
running services will be primarily prioritized. We leverage
multi-dimensional resource isolation and real time resource
monitoring to achieve resource re-usability and QoS con-
trol. Generic APIs are developed and provided to enable
and simplify the integration of heterogeneous platforms. It
is noteworthy that Shaready configures resources for co-
located workloads dynamically by changing the resource
quota for batch jobs during workloads execute. Experimental
results show that compared with not using the system,
Shareday can improved CPU and memory utilization by
roughly 50% and 16.67% respectively on average with at
most 7% performance degradation. The main contributions
of this work are:

• We designed a resource-isolated workload co-
location system and it can minimize the performance
impact of batch jobs on long-running services. The
management system can be easily deployed over
multi-platforms and configures resources dynami-
cally.

• The dynamic quota configuration is implemented
through Shaready controller and resource isolation,
by which we can dynamically change the resource
quota for batch jobs during the workloads execute.
Here, we used cgroup to manage cpu resources
availability for batch jobs. As for memory resources
isolation, we update the maximum amount of mem-
ory resources available to batch jobs through existing
heartbeat mechanism, while reusing the dynamic
thread monitoring technology.



Organization. We firstly outline the background and
related work in Section 2. We present the objectives and core
design overview in Section 3 before describing the involved
key techniques in Section 4. The experiments are given in
Section 5. We conclude our work in Section 6.

2. Background and Related Work

The rapid advancement of cloud computing brought
unprecedented progresses by on-demand and elastic com-
puting and business models. The shared resource pool is
commonly adopted by cloud vendors to reduce monetary
costs and lift the management flexibility. However, large-
scale IaaS systems severely suffer from low utilization and
resource imbalance. For example, 30% of servers on average
in the world are in a state where hardware resources are
not being used effectively [5]. In general, the resources re-
quired for different types of workloads often differ. Different
types of task loads, such as long-running applications, and
batch jobs for massive data, have different characteristics
and are typically implemented on different platforms. To a
certain extent, physical cluster resources are not effectively
utilized. Besides, different types of task loads have differ-
ent degrees of dependence on different kinds of resources
(CPU, memory, IO, etc.). As a result, traditional IDCs are
underutilized with resources, which further aggravate such
problems. From the trend of green IT, improvement for
optimized computing power of IDCs, guaranteed quality of
service and increased resource utilization is imperative. To
wrap up, resource imbalance and low utilization are still
challenging problems for cluster management systems in
data centers, even in the joint cloud [6] and fog computing
[7] environments.

Resource management systems have emerged to improve
cluster resource allocation. Mesos [8], Yarn [9], Fuxi [10]
and so on are the current mainstream resource manage-
ment framework, and also the representative of the two-
tier scheduling system, they decouple the resource man-
agement module and the task scheduling module. Similar
work includes: Sparrow [11], ROSE [12], etc. Unfortunately,
most existing batch job schedulers are not well compatible
with online systems running VM tasks and cannot flexibly
isolate and limit task resources. For Borg [13], most long-
running applications run in containers instead of virtual
machines. Facebook proposed Bistro [14] to replace the
previously used Hadoop. Bistro is a scheduler that allows
batch jobs to share clusters with online customer-facing
workloads without harming the performance of either. Bistro
treats large-scale data nodes as resource trees and organizes
cluster resources hierarchically. In the production cluster
resource configuration, Bistro adopts manual static config-
uration, which satisfies Facebook’s demand for large-scale
data processing tasks in production clusters. Static resource
allocation cannot cope with the rapid change of resource
usage, which does not meet our objectives. Besides, some
IaaS systems, as legacy estates, are hard to be re-planned by
new cluster management systems. Therefore, this paper we

Config

Loader
Scheduler

File

NMDynamic

ResourceUpdater

Libvirt

Monitor

Zookeeper

VMs

Libvirt

Log LogstashBeats Elastic

Search
Kibana

Resource monitoring and logging system

LinuxContainer

Executor

Cgroups

Hadoop-yarn

Subsystem

OpenStack Nova

Central processing 

logic

Internal External

Figure 1. System architecture

propose Shaready, a resource-isolated workload co-location
system.

3. System Design

3.1. Objectives

The main purposes of Shaready can be summarized as
follows:

Flexible deployment over existing platforms. IaaS
systems are mostly intricate to be re-planned. Due to this
reason, Shaready is designed to adapt and incorporate dif-
ferent platforms via generic service invocation interfaces
without huge modifications of existing systems.

Dynamic resource configuration for improved re-
source utilization. The majority of existing systems adopt
static and manual configuration, indicating the difficulties
of dynamic resource tuning among different loads. Since
resource usage may sharply fluctuate during the creation and
migration of virtual machines, it is potential for other batch
jobs to temporarily reuse the idle resources. The key thing
for elastic resource sharing is the over-subscribed resource
should be timely revoked without impacting the expected
resource planning.

QoS guarantee for long-running services. Virtual
machine services are representative of long-running and
resource-sensitive workloads in cloud environment. Higher
degree of resource sharing implies increased resource con-
tention and performance interference. Therefore, guarantee-
ing the QoS of long-running services is the priority.

3.2. System Overview

Figure 1 discribes the system architechture, and each
part of the system works asynchronously. In the central
processing logic, the central resource scheduling module can



sense the resource changes of the cluster and communicate
with the global resource view maintained by Zookeeper
in real time. The configuration loader avoids hard coding,
facilitates the deployment of the system in different envi-
ronments, and is able to set multiple operational strategies
flexibly. Libvirt Monitor module is used to obtain the re-
source usage of the virtual machine in real time. Since
the Libvirt API supports multiple virtualization technologies
such as KVM, Xen, and Qemu, we use it to implement
the module. Zookeeper maintains a global forest resource
view to update the resource usage information uploaded by
each node of the cluster. When the module gets the latest
global resource view, it synchronizes information with the
scheduler. The scheduler updates the scheduling result of
each node to Zookeeper in real time. Each node obtains
the target value from Zookeeper and adjusts its resource
allocation. We use Logstash and ElasticSearch to collect
resource logs. Kibana is responsible for displaying resource
information in real time. Users can observe the resource
changes of the cluster in real time through the Web UI.
Restrictions on the use of multidimensional resources are
implemented through cgroups technology.

4. Key Techniques

This section discusses the implementation details of the
system. The core components include: 1) global configura-
tion loader and resource scheduling; 2) dynamic resource
isolation modules; 3) resource monitoring module. The
global configuration gives the available resource information
of nodes in a cluster and the control strategy for dynamic re-
source isolation. Once a deployment scheme is determined,
the resource monitoring and isolation will work to guarantee
the QoS of long-running services while there are batch jobs
running at the same time. To ensure the consistency and
high availability of clusters, we designed a resource forest
module for distributed resource awareness, which will be
introduced in the last part in this section.

4.1. Global Configuration and Resource Partition

A global configuration ensure the co-residence of di-
verse frameworks (e.g., different legacy systems) properly.
We adopt a two-tiered architecture: 1) A global sched-
uler (Level-0 controller) that manages the allocation quota
among different computing frameworks and coordinates
multiple resource scheduler at framework-specific level
(Level-1 scheduler); 2) Framework level scheduler is re-
sponsible for the application-specific logics – managing the
granted resources according to the global quota share and
mapping waiting tasks to particular resources.

The sharing proportion is determined by the pre-defined
policy and resource ratio that specifies the allowance that
a specific framework can own. Different policies mainly
represent different priorities of long-running services. Theo-
retically, the higher priority we set for long-running services,
the stricter resource restrictions will be enforced on batch

jobs. We also update the latest available resources by lever-
aging information provided by agents that are deployed on
different machines.

4.2. Resource Isolation

By resource isolation technique, we can change the
resource quota for batch job tasks dynamically during the
workloads execute. For memory, resource reconfiguration
signal is implemented based on heartbeat mechanism. Once
the resources are insufficient, batch jobs will immediately
trigger the event and be killed immediately. Nevertheless,
CPU is an elastic resource which is more flexible, so we
implemented CPU isolation mainly based on cgroups tech-
nology.

Memory Isolation. In order to avoid the interference
of batch jobs on the operation of long-running services,
the dynamic resource isolation module needs to limit the
available resources of batch jobs in real time. In Yarn,
the resource manager(RM) needs to determine whether the
node’s resources are sufficient to allocate the next container.
The default resource calculation class DefaultResourceCal-

culator only consider the memory. That is, the only resource
considered when the RM allocates a container to the node
manager(NM) is whether the memory size is sufficient.
Hadoop Yarn sets the maximum amount of physical memory
resources of a node by changing the configuration file. The
disadvantage of this configuration is that if you want to limit
the resource consumption of batch jobs, you must restart
the entire Hadoop platform. In order to achieve dynamic
resource isolation, we implemented a dynamic adjustment
module for memory resources in Hadoop Yarn.

The RM runs on a designated machine, allocating re-
sources between competing applications. Multiple RMs can
be launched for high availability, but only one is the primary
RM. The NM periodically reports the status to the RM,
which stores it as a cluster status. To achieve scalability,
communication between RM and NM is based on a heartbeat
mechanism. We put the NM resource update into every
heartbeat. RM will change the available resource for each
node after receiving its heartbeat, so that resources may not
be allocated for new container for lack of resources. This
process can be executed continuously while Hadoop Yarn
still works. Once the resources are insufficient, the container
will immediately trigger the event and be killed immediately.

CPU Isolation and Throtting. Unlike memory, the CPU
is an elastic resource. That is, the task generally extends the
makespan because of the limitation of the CPU, but it will
not be killed immediately. In our system, the CPU limit for
a specific task is implemented by cgroup, and its strategy
can be expressed by the following formula.

N = CFSquota/CFSperiod (1)

N represents the number of cores the task can use.
By adjusting the ratio of the formula, we can limit the
overall CPU usage of the task. It should be noted that
for multi-core CPUs, only such restrictions cannot prevent



Figure 2. Pseudo code for obtaining VM memory resources

Elasticsearch

Log files

Filebeat

Logstash

filter

Metricbeat

Read File

Data format 

processing

System Info

Kibana

Log files

Filebeat

Read File

Log files

Filebeat

Read File

Metricbeat Metricbeat

Cluster

Figure 3. Logging and Monitoring

the load balancing operation of the Linux kernel. In this
case, processes will run on all processor cores. Cgroups
can provide kernel bindings to avoid the load balancing
process caused by frequent multi-core scheduling. In our
implementation, specific tasks are not bound to specific CPU
cores by default for better performance.

4.3. Dynamic Resource Monitoring

This section corresponds to the Libvirt Monitor compo-
nent depicted in Figure 1. To prioritize the performance of
long-running applications, we need to recap the upper bound
of available resource that Hadoop Yarn can use according to
the resources occupied by virtual machines. Therefore, it is
a key challenge to timely and accurately monitor occupied
resources by virtual machines, particularly when a new
virtual machine is launched or load bursting manifests (often
accompanied with an non-negligible increase of resource
utilization).

In the remaining section, we take memory and CPU
resource collection as an example to demonstrate the rel-
evant core idea. Due to libvirt can be adopted into different

Rack A

Host A1 Host An

Rack N

Host B1 Host Bn…

CPU 

utilization

RSS 

memory
…

Target

CPU_util

…

Figure 4. Global forest resource view

hypervisors, the proposed monitoring mechanism can be
easily generalized.

Minitoring. Figure 2 describes a pseudo code to ob-
tain the memory resources. Specifically, the conn repre-
sents the connection established with the hypervisor. The
RSSMemory represents the host memory usage. The basic
flow of the program is to first get a list of virtual machine
ids running on the entire machine, and then use the loop to
read the RSS memory information of each virtual machine.
By accumulating these values, we can get the total memory
occupied by the virtual machine task on the current machine.

Libvirt does not provide a function to calculate the CPU
usage of the virtual machine, so here we have to calculate it
indirectly by the relationship between CPU time and CPU
usage.

cpuusage =
cputimeend − cputimebegin
realtimeend − realtimebegin

× 100% (2)

In order to get a time difference, we generally need to let
the program wait for a cycle time, after which we can get the
CPU utilization according to formula 2. Cputime refers to
the CPU time occupied by a virtual machine process, which
is an absolute value. We need to calculate the difference and
divide by the difference between the real time, which is the
CPU usage of the virtual machine during this time. It should
be noted that for multi-core CPUs, the value calculated at
this time will be greater than 1.

Logging System and Resource Visualization. The log-
ging system and resource visualization module is shown in
figure 3. We need to fetch information from two sources.
One is the system metric information, such as the over-
all usage of the CPU and memory, using Metricbeat to
collect data. The other is information from log files, such
as monitoring information about virtual machine resources.
Information from files needs to be formatted by Logstash.
All information is then aggregated into the ES database and
resource visualization is done through Kibana.

4.4. Global Forest Resource View

The cluster resource information stores in log files by
resource monitoring module. In order to obtain detailed
resource information of each node and complete resource
isolation in real time. We design the global forest resource



(a) Memory resource usage percent in OT case

MT MTS

(b) Memory resource usage percent in MT/MTS cases

OT

(c) CPU usage percent in OT case(100% for one core)

MT MTS

(d) CPU usage percent in MT/MTS case(100% for one core)

Figure 5. Overall resource utilization in OT/MT/MTS cases

view, by which node status can be read and written at high
speed and has high availability in clusters.

The global resource view of the cluster is established
through Zookeeper. Figure 4 shows how the resource tree
is built. The resource view presents a tree structure that
records information including the rack number, host name,
and resource information. The advantage of using Zookeeper
is that high availability effectively avoids single points of
failure, consistent performance of resource information and
good read and write performance. The information of the
child nodes of each host includes resource information of
multiple dimensions on the current node and target resource
values written by the scheduling module. The daemon run-
ning on the node completes the information interaction with
the global resource view.

5. Evaluation

Environment Setup. To evaluate the performance of our
system, we validated it on a minicluster with eight physical
nodes. Each node has a 8 cores CPU @2.20GHz, 16GB
memory and a 100GB disk running Ubuntu 14.04.5 LTS
64-bit system. Clusters are deployed with Openstack and
Hadoop.

Metrics. The experiments will be performed upon three
cases: 1) OT (Only long-running applications). Only a cer-
tain number of virtual machines are running in the clus-
ter, and the virtual machine runs a typical long-running
workload. 2) MT (Co-located mixed workloads without
Shaready). We mix the virtual machine submissions and
MapReduce batch jobs without running the system and same
load inside the virtual machine. 3) MTS (Co-located mixed
workloads with Shaready). Enable the system while co-
located workloads are running.

Workloads. In our environment, three virtual machine
instances are running on this node. Each instance has 512M
of memory, a virtual core and 5GB disks, and is launched
with Ubuntu 12.04 cloud amd64 image. Two of the three
instances performed standard tests of Tpcc-mysql, simulating
the actual access and database operations as a long-running
application in the experimental scenario. During this time
we submitted MapReduce batch jobs to the cluster. The
batch jobs include WordCount and Monte Carlo methods
for calculating pi.

5.1. Efficiency: Resource Utilization

Firstly, we collected the CPU and memory in three cases
to validate the effective improvement of resource utilization
of Shaready. Figure 5 (a) and (b) are the real-time usage
curves of node memory, and (c) (d) correspond to CPU us-
age. As shown in figure 5 (a), memory utilization kept stably
at about 60% in OT case. We evaluated memory utilization
in MT and MTS cases as shown in Figure 5 (b). In MT case,
peak utilization can reach 80% while memory utilization
fluctuates greatly. In MTS case, the average utilization can
reach about 70% with minor fluctuations because of the
dynamic resource isolation. Figure 5 (c) is the CPU usage
in OT case, in which CPU utilization kept stably at about
20%. In figure 5 (d), it is observable that CPU utilization
can reach 30% on average and 40% at certain time in MTS
case. However, in MT case, CPU utilization can even reach
higher, which means a better resource utilization, but the
fluctuations will seriously affect the quality of long-running
services. We will discuss this case in section 5.2.

In summary, Shaready increased the memory utilization
by about 16.67% (60% to 70%). For CPU usage, Shaready

was able to achieve a 50% CPU increment, with the average
cluster CPU utilization increasing from 20% to 30% com-
pared with not using co-location technique. Peak value can
even achieve a 100% increment (20% to 40%).

5.2. Effectiveness: Performance

Both MT and MTS can bring an increase in resource
utilization, which is in line with our expectations, but the
impact of MT and MTS on the quality of service for
long-running services varies widely. TPCC-mysql defines
multiple types of services, and we measure the quality of
long-running services through makespan. At the same time,
we compare the performance score of the machine in the
case of MT/MTS to measure the system’s performance.



(a) Stock Level (b) Payment (c) Order Inquiry (d) New Order

Figure 6. Makespan of different types of workload in OT/MT/MTS cases

TABLE 1. INSTANCE PERFORMANCE SCORES

Instance Tpmc scores
ID OT MT MTS

testb 389.400 294.600 361.000

testc 384.600 312.800 358.600

Figure 6 shows makespans of four typical businesses of
TPCC-mysql: stock level, payment, order inquiry, and new
orders. We collected more than 30 sets of sample data for
each business.

It can be seen that in the case of MTS, the completion
time of the business is significantly better than that of
the MT. First reflected in the average time, followed by
the control of outliers. It solves the problem that the task
execution time is long and the execution time is unstable.
For the longest completion time of the business (including
outliers), MTS has an improvement of about 50% compared
to MT, while relative OT (baseline), elapsed time can be
controlled within 5% to 10%.

Meanwhile we compare the performance scores of vir-
tual machines in different cases. The standard test for each
TPCC also gives a standard indicator (TpmC), which implies
how many new order transactions can be processed per
minute when the system performs above standard business
operations. Therefore TpmC can be used as a standard score
to measure server performance. Table 1 shows the virtual
machine performance scores for different situations.

The experimental results demonstrate that MTS in-
creases the overall performance of MT by roughly 20%.
Performance degradation is 7% lower compared against
baselines that only run long-running application tasks (OT).

6. Conclusions

This paper proposed Shaready, a resource-isolated work-
load co-location system based on Openstack and Hadoop.
The system can be easily deployed onto multi-platform
with resources dynamically configured. We also designed
a resource forest view to expose all system resources. By
deploying the system, the overall utilization can be im-
proved, and the quality of long-running services in virtual
machines is guaranteed. The system has not been perfected.
In the future, we are planning to reinforce the resource

isolation of cache and network bandwidth. We are also
experimenting based on a larger scale testbed to further
validate the deployment effectiveness and efficiency.

References

[1] Aws news blog. [Online]. Available: https://aws.amazon.com/cn/
blogs/aws/cloud-computing-server-utilization-the-environment/

[2] H. Liu, “A measurement study of server utilization in public clouds,”
in 2011 IEEE Ninth International Conference on Dependable, Auto-

nomic and Secure Computing. IEEE, 2011, pp. 435–442.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Queue, vol. 14, no. 1, p. 10, 2016.

[4] M. Schwarzkopf, A. Konwinski et al., “Omega: flexible, scalable
schedulers for large compute clusters,” in ACM EuroSys, 2013.

[5] M. Uddin, A. Shah, R. Alsaqour, J. Memon, and M. J. Saqour RA-
HASRAHA, “Measuring efficiency of tier level data centers to im-
plement green energy efficient data centers,” Middle-East Journal of

Scientific Research, vol. 15, no. 2, pp. 200–207, 2013.

[6] H. Wang, P. Shi, and Y. Zhang, “Jointcloud: A cross-cloud coop-
eration architecture for integrated internet service customization,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-

tional Conference on. IEEE, 2017, pp. 1846–1855.

[7] R. Yang, Z. Wen, D. McKee, T. Lin, J. Xu, and P. Garraghan, “Fog
orchestration and simulation for iot services,” 2018.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center.” in USENIX NSDI, vol. 11,
no. 2011, 2011, pp. 22–22.

[9] V. K. Vavilapalli, A. C. Murthy, C. Douglas et al., “Apache hadoop
yarn: Yet another resource negotiator,” in ACM SoCC, 2013.

[10] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: a fault-
tolerant resource management and job scheduling system at internet
scale,” VLDB Endowment, vol. 7, no. 13, pp. 1393–1404, 2014.

[11] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
distributed, low latency scheduling,” in ACM SOSP, 2013.

[12] X. Sun, C. Hu, R. Yang, P. Garraghan, and C. Li, “Rose: Cluster
scheduling through efficient resource overselling,” in ACM SOSP

poster, 2017.

[13] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
ACM EuroSys, 2015, p. 18.

[14] A. Goder, A. Spiridonov, and Y. Wang, “Bistro: Scheduling data-
parallel jobs against live production systems.” in USENIX Annual

Technical Conference, 2015, pp. 459–471.


