628 research outputs found
Detection of herb-symptom associations from traditional chinese medicine clinical data
YesTraditional Chinese medicine (TCM) is an individualized medicine by observing the symptoms and signs (symptoms in brief) of patients. We aim to extract the meaningful herb-symptom relationships from large scale TCM clinical data. To investigate the correlations between symptoms and herbs held for patients, we use four clinical data sets collected from TCM outpatient clinical settings and calculate the similarities between patient pairs in terms of the herb constituents of their prescriptions and their manifesting symptoms by cosine measure. To address the large-scale multiple testing problems for the detection of herb-symptom associations and the dependence between herbs involving similar efficacies, we propose a network-based correlation analysis (NetCorrA) method to detect the herb-symptom associations. The results show that there are strong positive correlations between symptom similarity and herb similarity, which indicates that herb-symptom correspondence is a clinical principle adhered to by most TCM physicians. Furthermore, the NetCorrA method obtains meaningful herb-symptom associations and performs better than the chi-square correlation method by filtering the false positive associations. Symptoms play significant roles for the prescriptions of herb treatment. The herb-symptom correspondence principle indicates that clinical phenotypic targets (i.e., symptoms) of herbs exist and would be valuable for further investigations
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
Observation of Two New N* Peaks in J/psi -> and Decays
The system in decays of is limited to be
isospin 1/2 by isospin conservation. This provides a big advantage in studying
compared with and experiments which mix
isospin 1/2 and 3/2 for the system. Using 58 million decays
collected with the Beijing Electron Positron Collider, more than 100 thousand
events are obtained. Besides two well known
peaks at 1500 MeV and 1670 MeV, there are two new, clear peaks in
the invariant mass spectrum around 1360 MeV and 2030 MeV. They are the
first direct observation of the peak and a long-sought "missing"
peak above 2 GeV in the invariant mass spectrum. A simple
Breit-Wigner fit gives the mass and width for the peak as MeV and MeV, and for the new peak above 2 GeV
as MeV and MeV, respectively
Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field
We have studied the quantum transport in a narrow constriction acted upon by
a finite-range longitudinally polarized time-dependent electric field. The
electric field induces coherent inelastic scatterings which involve both
intra-subband and inter-sideband transitions. Subsequently, the dc conductance
G is found to exhibit suppressed features. These features are recognized as the
quasi-bound-state (QBS) features which are associated with electrons making
transitions to the vicinity of a subband bottom, of which the density of states
is singular. Having valley-like instead of dip-like structures, these QBS
features are different from the G characteristics for constrictions acted upon
by a finite-range time-modulated potential. In addition, the subband bottoms in
the time-dependent electric field region are shifted upward by an energy
proportional to the square of the electric field and inversely proportional to
the square of the frequency. This effective potential barrier is originated
from the square of the vector potential and it leads to the interesting
field-sensitive QBS features. An experimental set-up is proposed for the
observation of these features.Comment: 8 pages, 4 figure
BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations
We analyze the phenomena of Bose Novae, as described by Donley et al [Nature
412, 295 (2001)], by focusing on the behavior of excitations or fluctuations
above the condensate, as driven by the dynamics of the condensate (rather than
the dynamics of the condensate alone or the kinetics of the atoms). The
dynamics of the condensate squeezes and amplifies the quantum excitations,
mixing the positive and negative frequency components of their wave functions
thereby creating particles which appear as bursts and jets. By analyzing the
changing amplitude and particle content of these excitations, our simple
physical picture (based on a test field approximation) explains well the
overall features of the Bose Novae phenomena and provide excellent quantitative
fits with experimental data on several aspects, such as the scaling behavior of
the collapse time and the amount of particles in the jet. The predictions of
the bursts at this level of approximation is less than satisfactory but may be
improved on by including the backreaction of the excitations on the condensate.
The mechanism behind the dominant effect -- parametric amplification of vacuum
fluctuations and freezing of modes outside of horizon -- is similar to that of
cosmological particle creation and structure formation in a rapid quench (which
is fundamentally different from Hawking radiation in black holes). This shows
that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure
Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources
We cross-correlate the Cosmic Microwave Background (CMB) temperature
anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with
the projected distribution of extended sources in the Two Micron All Sky Survey
(2MASS). By modelling the theoretical expectation for this signal, we extract
the signatures of dark energy (Integrated Sachs-Wolfe effect;ISW), hot gas
(thermal Sunyaev-Zeldovich effect;thermal SZ), and microwave point sources in
the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7
\sigma level, which is consistent with the theoretical prediction based on
observations of X-ray clusters. We also see the ISW signal at the 2.5 \sigma
level, which is consistent with the expected value for the concordance LCDM
cosmology, and is an independent signature of the presence of dark energy in
the universe. Finally, we see the signature of microwave point sources at the
2.7 \sigma level.Comment: 35 pages (preprint format), 8 figures. In addition to minor revisions
based on referee's comments, after correcting for a bug in the code, the SZ
detection is consistent with the X-ray observations. Accepeted for
publication in Physical Review
Constraining warm dark matter with cosmic shear power spectra
We investigate potential constraints from cosmic shear on the dark matter
particle mass, assuming all dark matter is made up of light thermal relic
particles. Given the theoretical uncertainties involved in making cosmological
predictions in such warm dark matter scenarios we use analytical fits to linear
warm dark matter power spectra and compare (i) the halo model using a mass
function evaluated from these linear power spectra and (ii) an analytical fit
to the non-linear evolution of the linear power spectra. We optimistically
ignore the competing effect of baryons for this work. We find approach (ii) to
be conservative compared to approach (i). We evaluate cosmological constraints
using these methods, marginalising over four other cosmological parameters.
Using the more conservative method we find that a Euclid-like weak lensing
survey together with constraints from the Planck cosmic microwave background
mission primary anisotropies could achieve a lower limit on the particle mass
of 2.5 keV.Comment: 26 pages, 9 figures, minor changes to match the version accepted for
publication in JCA
Topological Defects and CMB anisotropies : Are the predictions reliable ?
We consider a network of topological defects which can partly decay into
neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale
amplitude of the cosmic microwave background (CMB) anisotropies as well as the
shape of the matter power spectrum can be considerably modified when such a
decay is taken into account. We conclude that present predictions concerning
structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
- …