558 research outputs found

    Interaction of a surface acoustic wave with a two-dimensional electron gas

    Full text link
    When a surface acoustic wave propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is largely dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.Comment: 3 figure

    Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

    Full text link
    We present a stochastic theory for the nonequilibrium dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle's worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.Comment: Invited talk given by BLH at the International Assembly on Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1 figur

    Two Energy Release Processes for CMEs: MHD Catastrophe and Magnetic Reconnection

    Full text link
    It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed KuaFu satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.Comment: 7 pages, 4 figures, Adv. Spa. Res., in press

    Exact solution of the Hu-Paz-Zhang master equation

    Get PDF
    The Hu-Paz-Zhang equation is a master equation for an oscillator coupled to a linear passive bath. It is exact within the assumption that the oscillator and bath are initially uncoupled . Here an exact general solution is obtained in the form of an expression for the Wigner function at time t in terms of the initial Wigner function. The result is applied to the motion of a Gaussian wave packet and to that of a pair of such wave packets. A serious divergence arising from the assumption of an initially uncoupled state is found to be due to the zero-point oscillations of the bath and not removed in a cutoff model. As a consequence, worthwhile results for the equation can only be obtained in the high temperature limit, where zero-point oscillations are neglected. In that limit closed form expressions for wave packet spreading and attenuation of coherence are obtained. These results agree within a numerical factor with those appearing in the literature, which apply for the case of a particle at zero temperature that is suddenly coupled to a bath at high temperature. On the other hand very different results are obtained for the physically consistent case in which the initial particle temperature is arranged to coincide with that of the bath

    Decoherence scenarios from micro- to macroscopic superpositions

    Full text link
    Environment induced decoherence entails the absence of quantum interference phenomena from the macroworld. The loss of coherence between superposed wave packets depends on their separation. The precise temporal course depends on the relative size of the time scales for decoherence and other processes taking place in the open system and its environment. We use the exactly solvable model of an harmonic oscillator coupled to a bath of oscillators to illustrate various decoherence scenarios: These range from exponential golden-rule decay for microscopic superpositions, system-specific decay for larger separations in a crossover regime, and finally universal interaction-dominated decoherence for ever more macroscopic superpositions.Comment: 11 pages, 7 figures, accompanying paper to quant-ph/020412

    Pair excitations and parameters of state of imbalanced Fermi gases at finite temperatures

    Full text link
    The spectra of low-lying pair excitations for an imbalanced two-component superfluid Fermi gas are analytically derived within the path-integral formalism taking into account Gaussian fluctuations about the saddle point. The spectra are obtained for nonzero temperatures, both with and without imbalance, and for arbitrary interaction strength. On the basis of the pair excitation spectrum, we have calculated the thermodynamic parameters of state of cold fermions and the first and second sound velocities. The parameters of pair excitations show a remarkable agreement with the Monte Carlo data and with experiment.Comment: 14 pages, 5 figure

    Excess energy of an ultracold Fermi gas in a trapped geometry

    Full text link
    We have analytically explored finite size and interparticle interaction corrections to the average energy of a harmonically trapped Fermi gas below and above the Fermi temperature, and have obtained a better fitting for the excess energy reported by DeMarco and Jin [Science 285\textbf{285}, 1703 (1999)]. We have presented a perturbative calculation within a mean field approximation.Comment: 8 pages, 4 figures; Accepted in European Physical Journal

    Exact Diagonalization of Two Quantum Models for the Damped Harmonic Oscillator

    Full text link
    The damped harmonic oscillator is a workhorse for the study of dissipation in quantum mechanics. However, despite its simplicity, this system has given rise to some approximations whose validity and relation to more refined descriptions deserve a thorough investigation. In this work, we apply a method that allows us to diagonalize exactly the dissipative Hamiltonians that are frequently adopted in the literature. Using this method we derive the conditions of validity of the rotating-wave approximation (RWA) and show how this approximate description relates to more general ones. We also show that the existence of dissipative coherent states is intimately related to the RWA. Finally, through the evaluation of the dynamics of the damped oscillator, we notice an important property of the dissipative model that has not been properly accounted for in previous works; namely, the necessity of new constraints to the application of the factorizable initial conditions.Comment: 19 pages, 2 figures, ReVTe

    CO adsorption on neutral iridium clusters

    Get PDF
    The adsorption of carbon monoxide on neutral iridium clusters in the size range of n = 3 to 21 atoms is investigated with infrared multiple photon dissociation spectroscopy. For each cluster size only a single v(CO) band is present with frequencies in the range between 1962 cm-1 (n = 8) and 1985 cm-1 (n = 18) which can be attributed to an atop binding geometry. This behaviour is compared to the CO binding geometries on clusters of other group 9 and 10 transition metals as well as to that on extended surfaces. The preference of Ir for atop binding is rationalized by relativistic effects on the electronic structure of the later 5d metals

    Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method

    Full text link
    Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian solvent [Phys.Rev.E 71,036707 (2005)]. An improved formulation called the ``Smoothed Profile (SP) method'' is presented here in which simultaneous time-marching is used for the host fluid and colloids. The SP method is a direct numerical simulation of particulate flows and provides a coupling scheme between the continuum fluid dynamics and rigid-body dynamics through utilization of a smoothed profile for the colloidal particles. Moreover, the improved formulation includes an extension to incorporate multi-component fluids, allowing systems such as charged colloids in electrolyte solutions to be studied. The dynamics of the colloidal dispersions are solved with the same computational cost as required for solving non-particulate flows. Numerical results which assess the hydrodynamic interactions of colloidal dispersions are presented to validate the SP method. The SP method is not restricted to particular constitutive models of the host fluids and can hence be applied to colloidal dispersions in complex fluids
    corecore