46,064 research outputs found

    Mode-locking of incommensurate phase by quantum zero point energy in the Frenkel-Kontorova model

    Get PDF
    In this paper, it is shown that a configuration modulated system described by the Frenkel-Kontorova model can be locked at an incommensurate phase when the quantum zero point energy is taken into account. It is also found that the specific heat for an incommensurate phase shows different parameter-dependence in sliding phase and pinning phase. These findings provide a possible way for experimentalists to verify the phase transition by breaking of analyticity.Comment: 6 pages in Europhys style, 3 eps figure

    Novel method for refinement of retained austenite in micro/nano-structured bainitic steels

    Get PDF
    A comparative study was conducted to assess the effects of two different heat treatments on the amount and morphology of the retained austenite in a micro/nano-structured bainitic steel. The heat treatments used in this work were two-stage bainitic transformation and bainitic-partitioning transformation. Both methods resulted in the generation of a multi-phase microstructure containing nanoscale bainitic ferrite, and/or fresh martensitic phases and much finer retained austenite. Both heat treatments were verified to be effective in refining the retained austenite in micro/nano-structured bainite and increasing the hardness. However, the bainitic transformation followed by partitioning cycle was proved to be a more viable approach than the two-stage bainitic transformation due to much shorter processing time, i.e. ∼2 h compared to ∼4 day, respectively

    Cosmic microwave background: polarization and temperature anisotropies from symmetric structures

    Get PDF
    I consider the case of anisotropies in the Cosmic Microwave Background (CMB) from one single ordered perturbation source, or seed, existing well before decoupling between matter and radiation. Such structures could have been left by high energy symmetries breaking in the early universe. I focus on the cases of spherical and cylindrical symmetry of the seed. I give general analytic expressions for the polarization and temperature linear perturbations, factoring out of the Fourier integral the dependence on the photon propagation direction and on the geometric coordinates describing the seed. I show how the CMB perturbations manifestly reflect the symmetries of their seeds. CMB anisotropies are obtained with a line of sight integration. This treatment highlights the undulatory properties of the CMB. I show with numerical examples how the polarization and temperature perturbations propagate beyond the size of their seeds, reaching the CMB sound horizon at the time considered. Just like the waves from a pebble thrown in a pond, CMB anisotropy from a seed intersecting the last scattering surface appears as a series of temperature and polarization waves surrounding the seed, extending on the scale of the CMB sound horizon at decoupling, roughly 1o1^{o} in the sky. Each wave is characterized by its own value of the CMB perturbation, with the same mean amplitude of the signal coming from the seed interior. These waves could allow to distinguish relics from high energy processes of the early universe from point-like astrophysical sources, because of their angular extension and amplitude. Also, the marked analogy between polarization and temperature signals offers cross correlation possibilities for the future Planck Surveyor observations.Comment: 21 pages, seven postscript figures, final version accepted for publication in Phys.Rev.

    Drive, filter, and stick: A protein sorting conspiracy in photoreceptors.

    Get PDF
    The sorting of proteins into different functional compartments is a fundamental cellular task. In this issue, Maza et al. (2019. J. Cell Biol https://doi.org/10.1083/jcb.201906024) demonstrate that distinct protein populations are dynamically generated in specialized regions of photoreceptors via an interplay of protein-membrane affinity, impeded diffusion, and driven transport

    An Effective Model of Magnetoelectricity in Multiferroics RMn2O5RMn_2O_5

    Full text link
    An effective model is developed to explain the phase diagram and the mechanism of magnetoelectric coupling in multiferroics, RMn2O5RMn_2O_5. We show that the nature of magnetoelectric coupling in RMn2O5RMn_2O_5 is a coupling between two Ising-type orders, namely, the ferroelectric order in the b axis, and the coupled magnetic order between two frustrated antiferromagnetic chains. The frustrated magnetic structure drives the system to a commensurate-incommensurate phase transition, which can be understood as a competition between a collinear or col-plane order stemming from the `order by disorder' mechanism and a chiral symmetry order. The low energy excitation is calculated and the effect of the external magnetic field is analyzed. Distinct features in the electromagnon spectrums in the incommensurate phase are predicted

    Kinetics of viral self-assembly: the role of ss RNA antenna

    Full text link
    A big class of viruses self-assemble from a large number of identical capsid proteins with long flexible N-terminal tails and ss RNA. We study the role of the strong Coulomb interaction of positive N-terminal tails with ss RNA in the kinetics of the in vitro virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call "antenna") and slide on it towards the assembly site. We show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss RNA antenna.Comment: 4 pages, 3 figures, several experiments are proposed, a new idea of experiment is adde

    Computation of closest bifurcations in power systems

    Full text link

    N-Soliton Solutions to a New (2 + 1) Dimensional Integrable Equation

    Full text link
    We give explicitly N-soliton solutions of a new (2 + 1) dimensional equation, ϕxt+ϕxxxz/4+ϕxϕxz+ϕxxϕz/2+x1ϕzzz/4=0\phi_{xt} + \phi_{xxxz}/4 + \phi_x \phi_{xz} + \phi_{xx} \phi_z/2 + \partial_x^{-1} \phi_{zzz}/4 = 0. This equation is obtained by unifying two directional generalization of the KdV equation, composing the closed ring with the KP equation and Bogoyavlenskii-Schiff equation. We also find the Miura transformation which yields the same ring in the corresponding modified equations.Comment: 7 pages, uses ioplppt.st

    Extended quasimodes within nominally localized random waveguides

    Full text link
    We have measured the spatial and spectral dependence of the microwave field inside an open absorbing waveguide filled with randomly juxtaposed dielectric slabs in the spectral region in which the average level spacing exceeds the typical level width. Whenever lines overlap in the spectrum, the field exhibits multiple peaks within the sample. Only then is substantial energy found beyond the first half of the sample. When the spectrum throughout the sample is decomposed into a sum of Lorentzian lines plus a broad background, their central frequencies and widths are found to be essentially independent of position. Thus, this decomposition provides the electromagnetic quasimodes underlying the extended field in nominally localized samples. When the quasimodes overlap spectrally, they exhibit multiple peaks in space.Comment: 4 pages, submitted to PRL (23 December 2005

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures
    corecore