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Abstract 

A comparative study was conducted to assess the effects of two different heat 

treatments on the amount and morphology of the retained austenite in a 

micro/nano-structured bainitic steel. The heat treatments used in this work were 

two-stage bainitic transformation and bainitic-partitioning transformation. Both 

methods resulted in the generation of a multi-phase microstructure containing 

nanoscale bainitic ferrite, and/or fresh martensitic phases and much finer retained 

austenite. Both heat treatments were verified to be effective in refining the retained 

austenite in micro/nano-structured bainite and increasing the hardness. However, the 

bainitic transformation followed by partitioning cycle was proved to be a more viable 

approach than the two-stage bainitic transformation due to much shorter processing 

time, i.e. ~2 hours compared to ~4 day, respectively. 
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Introduction 

The microstructure of micro/nano-structured bainitic steels consists of 

nano-structured bainitic ferrites plates (20~65 nm thickness) and carbon-enriched 

retained austenite films (≥20 vol%), which are formed during low temperature 

bainitic transformation typically ranging from 200 oC to 300 oC 1-5. Generally, the 

presence of retained austenite grains larger than 1 µm in this type of steel is 

undesirable 6, because the blocky retained austenite is prone to transform into brittle 

martensite under the influence of residual stresses or externally applied loads. Hase et 

al. 7 reported that the blocks of retained austenite could be eliminated by adopting a 

two-stage bainitic transformation (B+B). However, such treatments need long cycle 

time (usually e.g. in excess of 20 hrs 7, even if Co and Al were added to accelerate the 

bainitic transformation 3, 7). 

Previous works on the martensitic steels showed that the carbon from the 

supersaturated martensite can migrate to the untransformed austenite during 

partitioning stage 8-11. The carbon enrich retained austenite becomes more stable as a 

result of this relatively short process (usually ≤0.5 hrs) 12. Therefore, it appears that 

for the Q&P treatment, the microstructure can be refined and the transformation time 

can be considerably shortened, compared to the low temperature 

micro/nano-structured bainitic transformation. In the present work, conventional 

micro/nano-structured bainitic transformation combined with partitioning, and 

quenching process was conducted in order to develop a micro/nano-structured bainitic 

steel with even finer and more stable retained austenite grains. The heat treatment 

sequence consisted of a low temperature bainitic transformation followed by a 

partitioning process at an intermediate temperature, and finally water quenching to 

room temperature (B+P+Q). The effect of such multi-stage heat treatment on the 

microstructure of a micro/nano-structured bainitic steel was investigated by using 

optical, scanning and transmission electron microscopy methods.  

 

Experimental 



The chemical composition of the steel used in this work is given in Table 1. The 

high C content was used to reduce the transformation temperature and obtain the 

nanoscale bainitic ferrite. The Si was enough to prevent the precipitation of cementite. 

The Mn and Cr improved the stability of austenite and the Mo eliminated the 

brittleness. The high Ti content was utilized to refine the austenite grain and to form 

Ti carbides during intermediate temperature service. The as-received steel was 

homogenized at 1200 oC for 48 hrs in a vacuum furnace followed by furnace cooling 

to room temperature. All homogenized specimens were austenitized at 1000 oC. One 

set of samples went through an initial bainitic transformation at 300 oC for 24 hrs 

followed by second bainitic transformation at 200 oC for 48 and 96 hrs. Another set of 

the austenitised samples went through the same bainitic transformation at 300 oC for 

24 hrs first and then were kept at 450 oC for 0.5 and 2 hrs, before water quenching to 

room temperature (B+P+Q). 

Scanning electron microscope (Sirion 200) and transmission electron microscope 

(JEM 2010 HT) were used to examine the microstructures and also to determine the 

distribution, size and morphology of the retained austenite, bainitic ferrite and 

martensite constituent phases. The thickness t of lath-shape phases was determined by 

measuring the mean linear intercept  in a direction normal to the each set 

of plates 13. All specimens for microstructure observations were ground and polished 

using standard techniques and etched in 4 vol% nital solution. TEM specimens were 

machined into 3 mm diameter rods, which were sliced into 100 µm thick discs. Each 

slice disc was ground down to 50 µm in thickness by using 2000 grit silicon carbide 

paper, followed by electro-polishing at 50 V by using a twin-jet unit electro-polisher 

at room temperature. The electrolyte consisted of 5 % perchloric acid, 15 % glycerol 

and 80 % methanol.  

A number of square samples (10 mm×10 mm×2 mm) were ground, polished and 

slightly etched in 4 vol% nital for the phase characterization by X-ray diffractometry 

(Xpert Pro MPD, operating at 40 kV and 45 mA, with Cu Kɑ radiation). The 2θ 

scanning angles were varied from 20o to 100o with a stepping angle of 0.03342o. 

Finally, the volume fraction of retained austenite was calculated by measuring the 

/ 2L tπ=
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integrated intensities of the (111), (200), (220) and (311) austenite peaks, and 

comparing them with the (110), (002), (112) and (022) bainite peaks 14-15, with an 

error of about ±0.015 vol%. The carbon concentration in austenite was estimated from 

the measured lattice parameters 15-16 with an accuracy of about ±0.10 wt%. Each 

hardness value, reported in this work, is the average of at least ten Vickers tests (1 

kg). 

 

Results 

Fig. 1 shows the microstructure of a sample after a single-stage isothermal 

transformation at300oC for 24 hrs. The high magnification SEM and TEM 

micrographs show that the microstructure consists of nano-size bainitic-ferrite plates 

(~100 nm) and some retained austenite. The retained austenite appears as ultrafine 

(<100 nm) films or micron-size blocks (>1000 nm) between the bainite sheaves. 

Fig. 2 shows optical and SEM micrographs of the samples which went through a 

two-stage bainitic transformation (B+B) and those subjected to bainitic transformation 

then partitioning and finally quenching stages (B+P+Q). The absence of large blocks 

of retained austenite in the samples subjected to partitioning cycle is clear. 

Nevertheless, Figs. 2b and 2d show the volume fractions of retained austenite in the 

samples subjected to the two-sage heat treatments (B+B) or three-stage cycle (B+P+Q) 

are comparable. 

The high magnification SEM micrographs in Fig. 3 show that increasing the 

bainitic transformation time from 48 to 96 hrs (compare Figs. 3a and 3b) or 

partitioning time from 0.5 to 2 hrs (compare Figs. 3c and 3d) had no significant effect 

on the microstructure of the tests samples. These micrographs also prove that a long 

B+B cycle can be replaced by the much shorter B+P+Q cycle without compromising 

the resultant microstructure. This is an important finding in terms of potential 

economic benefits of the B+P+Q cycle, developed in this work. 

The thicknesses of the retained austenite blocks are given in Table 2. In the 

samples with single-stage heat treatment (300 oC for 24 hrs), the thickness of the 



retained austenite blocks was just under 3000 nm. In the samples subjected to 2 stage, 

B+B and 3 stage B+P+Q thermal cycles, the thickness of the retained austenite blocks 

was reduced noticeably. Table 2 also shows that increasing the treatment time in B+B 

samples or increasing partitioning time in B+P+Q samples further reduced the 

thickness of retained austenite blocks.  

The reference sample which was treated in a single-stage bainitic transformation 

had an average hardness of 454 HV1 and contained 44 vol% retained austenite. As 

expected, the B+B and B+P+Q treated samples had higher hardness (532 and 540 

HV1, respectively) and lower amounts of retained austenite (23 and 28 vol%, 

respectively), compared to the reference sample. It was also noticed that the longer 

the bainitic transformation or partitioning time, the higher the hardness. In addition, 

the B+B and B+P+Q treated samples had slightly higher carbon contents in their 

austenite grains compared with those in the reference sample (2.02~2.14 wt% in B+B, 

1.83~1.96 wt% in B+P+Q and 1.79 wt% in the reference sample). 

 

Discussion 

The experimental outcome of this work was checked against the general theory of 

phase transformation in steel. MUCG83.Mod program [17] was used to estimate the 

free energy available for the transformation of retained austenite to ferritic/bainitic 

phases as a function of carbon content in the retained austenite. Using the same 

program, the effect of carbon content on the corresponding TTT phase diagram was 

also modeled. Fig. 4 shows that the driving force for decomposition of the retained 

austenite is reduced as its carbon content is increased. Consequently, the C-curve is 

shifted to the right hand side of the TTT-diagram. In the other words, the higher 

carbon content in the retained austenite is longer in the bainitic transformation time. 

In all samples, some bainitic ferrite plates and carbon-enriched untransformed 

retained austenite were evolved in the course of initial isothermal transformation at 

300oC. Further transformation of the carbon-enriched retained austenite was possible 

either by keeping the sample at lower temperature to trigger a secondary bainitic 



transformation (B+B) or quenching it in water to produce fine martensitic plates after 

a short carbon homogenization period at 450°C (B+P+Q). In the second stage of the 

two-stage bainitic transformation (B+B), some nano-scale baintic sheaves were 

formed from the untransformed austenite as a result of keeping the steel at a lower 

temperature (Fig. 5a). Whereas in the B+P+Q process, the leftover austenite from the 

first stage, transformed to fine plates of martensite during the final quenching stage 

(Fig. 5b). The fresh bainite or martensite plates are very fine due to the large driving 

forces 18 available for the decomposition of carbon-enriched retained austenite at low 

temperatures. 

Fig. 5b shows the thickness of martensitic plates in a B+P+Q sample is about 

10~20 nm, which is much thinner than ~100 nm for the bainitic ferrite plates in a 

bainite sample. Consequently, large blocks of retained austenite were fragmented and 

divided by the newly formed martensite sheaves; hence a much finer microstructure 

was obtained. Fig. 6 schematically shows the microstructural evolution of prior 

austenite and the change in its carbon content during various heat treatments in a 

micro/nano-structured bainitic steel. Unlike the diffusionless martensitic 

transformation, it is commonly accepted that carbon partitioning occurs during the 

bainitic transformation. According to the T0' line theory, the maximum carbon 

concentration in austenite under para-equilibrium condition decreases when the 

temperature increases. In the present work, Si was added into the steel to suppress the 

precipitation of cementite during bainite transformation at lower temperature. The 

bainitic ferrite formed at lower temperature is a solid solution with saturated carbon 

atoms. During the followed partitioning at higher temperature (450°C), the carbon 

atoms have a higher mobility and can continue to diffuse from bainitic ferrite to form 

carbon-enriched austenite and thus improve the stability of austenite 19. It is also 

possible that the carbon concentration in retained austenite is homogenised during the 

partitioning stage. This could stabilise the carbon-lean blocky retained austenite. The 

thin retained austenite plates entrapped between sub-units of bainitic ferrites have 

higher carbon contents than the blocky retained austenite located between the sheaves 

of bainite 20. Both types of retained austenite could transform to bainite or martensite.  



Haseet al. 7 reported that the austenite blocks were subdivided by newly generated 

bainite in various orientations following a B+B thermal treatment in a 

micro/nano-structured bainitic steel. Moreover, the refined retained austenite through 

the B+B treatment, significantly improved the toughness of the micro/nano-structured 

bainitic steel. Our previous work 21 has revealed that multi-step micro/nano-structured 

bainitic transformation can improve the strength, ductility as well as toughness owing 

to the refinement and reduction of blocky martensite/retained austenite constituents in 

medium carbon steels.  

Most recently, Luo al. 22 reported that a multi-phase microstructure contained 

martensite and nanostructured bainite (nanoscale bainitic ferrite and austenite) was 

obtained by QPB (quenching - partitioning & bainitic transformation) process of 

bainitic steel, and the blocky austenite was rare after the novel quench and 

partitioning treatment. In the present work, fine fresh martensite plates produced by 

the B+P+Q treatment exhibit features and properties similar to those of the fine 

bainite plates produced by the B+B treatment. Nevertheless, B+P+Q seem to be a 

more viable process due to shorter processing time required as compared to that in a 

B+B cycle. A comprehensive investigation on the mechanical properties of 

micro/nano-structured bainitc steels produced by B+B and B+P+Q processes will be 

carried out in the future work. 

Conclusions 

The effect of a two-stage bainite transformation (B+B) and bainite 

transformation followed by partitioning/quenching process (B+P+Q) on the 

microstructure of a micro/nano-structured bainitic steel was investigated. The 

refinement of the retained austenite occurred due to the formation of ultrafine bainite 

or ultrafine martensitic plates in the B+B and B+P+Q treated samples, respectively. 

The level of austenite refinement and increase in the hardness were comparable using 

these thermal cycles although, the newly developed B+P+Q approach had a much 

shorter cycle time e.g. hours compared to days.  
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Table 1Chemical composition of investigated steel (wt.%) 

C Si Mn Cr Mo Ti Fe 

0.95 0.91 1.30 2.30 0.99 0.17 Bal. 

 

 

 

 

 

Table 2 Thickness (RA), volume fraction ( ), carbon content ( ) of retained 

austenite, and hardness of steel investigated in this work. BT and PT represent the 

secondary bainite transformation and partitioning temperatures, respectively. 

Samples Single-stage 
B+B (BT=200 oC) B+P+Q (PT=450 oC) 

2 days 4 days 0.5 hrs 2 hrs 

Block RA, nm  2970±1520 2690±1320 1880±640 2770±1030 1990±560 

, vol% 44 34 23 38 28 

, wt% 1.79 2.02 2.14 1.96 1.83 

Hardness, HV1 454±8 476±14 532±12 506±14 540±12 
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Fig. 1: (a) SEM and (b) TEM micrographs of a reference steel sample after bainitic 

transformation at 300 oC for 24 hrs (single-stage treatment). 

 

 

  
 

Fig. 2: Optical micrographs show (a) steel sample transformed to bainite by a 
single-stage heat treatment and (b) sample subjected to the same bainitic 

transformation followed by a partitioning /quenching cycle – note reduction in the 
volume of retained austenite blocks (bright phases) in the latter.  

 
 
 



  
Fig. 3: SEM micrographs show comparable microstructures of steel samples made by 
(a) two stage baintic transformation (B+B) and (b) a bainitic transformation followed 
by a partitioning /quenching cycle (B+P+Q) – see text for process conditions. 
 

  

  
Fig. 4 SEM micrographs show sheaves of bainite are very similar in samples made in 
this work (a) B+B in 48 hrs, (b) B+B in 96 hrs, (c) B+P (0.5 hr)+Q and (d) B+P (2 
hrs)+Q – see text for process conditions.  



  

Fig. 5: Calculated effect of carbon content in untransformed austenite on (a) free 

energy change and (b) TTT phase diagram of the investigated steel. 

 

 

 

 

Fig. 6 TEM micrograph of a water quenched super-bainitic steel shows progressive 

formation of very fine martensite plates into retained austenite sheaves.   
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Fig. 7 Schematic diagram shows expected microstructures and carbon contents 

following the B+B and B+P+Q processes of a steel containing austenite (γ ), bainite 

( B ) and martensite ( M ). iC , Cγ , BC  and MC  represent the carbon contents of 

the bulk alloy, austenite, bainite and martensite, respectively. .BTs represent the 

temperatures of first and second baintic transformations and PT is the partitioning 

temperature just before quenching in water.  
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