27,883 research outputs found

    The Universal Edge Physics in Fractional Quantum Hall Liquids

    Full text link
    The chiral Luttinger liquid theory for fractional quantum Hall edge transport predicts universal power-law behavior in the current-voltage (II-VV) characteristics for electrons tunneling into the edge. However, it has not been unambiguously observed in experiments in two-dimensional electron gases based on GaAs/GaAlAs heterostructures or quantum wells. One plausible cause is the fractional quantum Hall edge reconstruction, which introduces non-chiral edge modes. The coupling between counterpropagating edge modes can modify the exponent of the II-VV characteristics. By comparing the Ī½=1/3\nu=1/3 fractional quantum Hall states in modulation-doped semiconductor devices and in graphene devices, we show that the graphene-based systems have an experimental accessible parameter region to avoid the edge reconstruction, which is suitable for the exploration of the universal edge tunneling exponent predicted by the chiral Luttinger liquid theory.Comment: 7 pages, 6 figure

    Energy Separation for Ranque-Hilsch Vortex Tube: A short review

    Get PDF
    In this article, the development of the energy separation for the vortex tube has been briefly reviewed. This review mainly focuses on three aspects, they are the energy separation principle, the design criteria of vortex tubes, and practical application. First, the research progress on the energy separation principle of the vortex tube from several aspects has been introduced, such as friction, pressure gradient, acoustic streaming, secondary circulation and multi-circulation theory. In addition, the control factors that affecting the performance of the vortex tube were summarized. Furthermore, due to its simple structure, safety and stability, the vortex tube is widely used in the field of refrigerating and heating, mixture separation. This survey, while extensive cannot cover all papers, some selection is necessary. The purpose of this review aims to summarize the important works of literature on the energy separation of vortex tube as well as identify limitations to existing studies and directions for future research

    A Data-Driven Approach to Measure Web Site Navigability

    Get PDF
    postprin

    Functional and adaptive significance of promoter mutations that affect divergent myocardial expressions of TRIM72 in primates

    Get PDF
    Cis-regulatory elements play important roles in tissue-specific gene expression and in the evolution of various phenotypes, and mutations in promoters and enhancers may be responsible for adaptations of species to environments. TRIM72 is a highly conserved protein that is involved in energy metabolism. Its expression in the heart varies considerably in primates, with high levels of expression in Old World monkeys and near absence in hominids. Here, we combine phylogenetic hypothesis testing and experimentation to demonstrate that mutations in promoter are responsible for the differences among primate species in the heart-specific expression of TRIM72. Maximum likelihood estimates of lineage-specific substitution rates under local-clock models show that relative to the evolutionary rate of introns, the rate of promoter was accelerated by 78% in the common ancestor of Old World monkeys, suggesting a role for positive selection in the evolution of the TRIM72 promoter, possibly driven by selective pressure due to changes in cardiac physiology after species divergence. We demonstrate that mutations in the TRIM72 promoter account for the differential myocardial TRIM72 expression of the human and the rhesus macaque. Furthermore, changes in TRIM72 expression alter the expression of genes involved in oxidative phosphorylation, which in turn affects mitochondrial respiration and cardiac energy capacity. On a broader timescale, phylogenetic regression analyses of data from 29 mammalian species show that mammals with high cardiac expression of TRIM72 have high heart rate, suggesting that the expression changes of TRIM72 may be related to differences in the heart physiology of those species

    Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface

    Get PDF
    To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN 2 reaction of Cl- + CH3 Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method. Ā© 2008 American Institute of Physics.published_or_final_versio

    Simultaneous Determination of Palladium and Platinum by On-line Enrichment and HPLC with 4-(2-Hydroxynaphthalene- 1-ylmethylene)-thiazolidine-2,5-Dithione as Pre-column Derivatization Reagent

    Get PDF
    In this paper, a new reagent, 4-(2-hydroxy-naphthalene-1-ylmethylene)-thiazolidine-2,5-dithione (HNMTD) was synthesized. A new method for the simultaneous determination of palladium and platinum ions as metal-HNMTD chelates was developed using high performance liquid chromatography equipped with an on-line enrichment technique. Prior to chromatography the palladium and platinum ions were derivatized with HNMTD to coloured chelate complexes. The Pd-HNMTD and Pt-HNMTD complexes were then enriched on an enrichment column(ZORBAXReversed Phase StableBoundC18, 4.6Ɨ10mm,1.8 Ī¼m) using a buffer solution of 0.05 mol Lā€“1 sodium acetate-acetic acid buffer (pH 3.8) as mobile phase.After the enrichment was completed, the retained chelates were back-flushed to the analytical column. The separation of chelates on the analytical column (ZORBAX Reversed Phase Stable Bound C18, 4.6 Ɨ 50 mm, 1.8 Ī¼m) was satisfactory when 72% methanol (containing 0.05 mol Lā€“1 of pH 3.8 sodium acetate-acetic acid buffer salt and 0.1% of TritonX-100) was used as mobile phase. The Pt-HNMTD and Pd-HNMTD chelates were separated completely within 2 min. The detection limits (S/N = 3) for palladium and platinum were 1.2 ng Lā€“1 and 1.4 ng Lā€“1, respectively. The method was applied with good results to the determination of palladium and platinum in water and urine samples.Keywords: Palladium, platinum, 4-(2-hydroxy-naphthalene-1-ylmethylene)-thiazolidine-2,5-dithione, high performance liquid chromatography, on-line enrichment

    Raman scattering, electronic, and ferroelectric properties of Nd modified Biā‚„Tiā‚ƒOā‚ā‚‚nanotube arrays

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The N-end rule pathway is a sensor of heme

    Get PDF
    The conjugation of arginine, by arginyl-transferase, to N-terminal aspartate, glutamate or oxidized cysteine is a part of the N-end rule pathway of protein degradation. We report that arginyl-transferase of either the mouse or the yeast Saccharomyces cerevisiae is inhibited by hemin (Fe3+-heme). Furthermore, we show that hemin inhibits arginyl-transferase through a redox mechanism that involves the formation of disulfide between the enzyme's Cys-71 and Cys-72 residues. Remarkably, hemin also induces the proteasome-dependent degradation of arginyl-transferase in vivo, thus acting as both a "stoichiometric" and "catalytic" down-regulator of the N-end rule pathway. In addition, hemin was found to interact with the yeast and mouse E3 ubiquitin ligases of the N-end rule pathway. One of substrate-binding sites of the yeast N-end rule's ubiquitin ligase UBR1 targets CUP9, a transcriptional repressor. This site of UBR1 is autoinhibited but can be allosterically activated by peptides that bear destabilizing N-terminal residues and interact with two other substrate-binding sites of UBR1. We show that hemin does not directly occlude the substrate-binding sites of UBR1 but blocks the activation of its CUP9-binding site by dipeptides. The N-end rule pathway, a known sensor of short peptides, nitric oxide, and oxygen, is now a sensor of heme as well. One function of the N-end rule pathway may be to coordinate the activities of small effectors, both reacting to and controlling the redox dynamics of heme, oxygen, nitric oxide, thiols, and other compounds, in part through conditional degradation of specific transcription factors and G protein regulators

    Development of pedestrian collision avoidance strategy based on the fusion of Markov and social force models

    Get PDF
    In urban traffic, accurate prediction of pedestrian trajectory and advanced collision avoidance strategy can effectively reduce the collision risk between intelligent vehicles and pedestrians. In order to improve the prediction accuracy of pedestrian trajectory and the safety of collision avoidance, a longitudinal and lateral intelligent collision avoidance strategy based on pedestrian trajectory prediction is proposed. Firstly, the process of a pedestrian crossing the road is considered as a combination of free motion described by first-order Markov model and the constrained motion presented by improved social force model. The predicted pedestrian trajectory is obtained by weighted fusion of the trajectories of the two models with a multiple linear regression algorithm. Secondly, according to the predicted pedestrian trajectory and time to collision (TTC) the longitudinal and lateral collision avoidance strategy is designed. The improved artificial potential field method is used to plan the lateral collision avoidance path in real time based on the predicted pedestrian position, and a fuzzy controller is constructed to obtain the desired deceleration of the vehicle. Finally, the pedestrian motion fusion model and the longitudinal and lateral collision avoidance strategy are verified by Prescan and Simulink co-simulation. The results show that the average displacement error (ADE) and final displacement error (FDE) of pedestrian trajectory based on pedestrian motion fusion model are smaller compared with a Markov model and improved social force model, and the proposed pedestrian collision avoidance strategy can effectively achieve longitudinal and lateral collision avoidance.</p

    Energy cost minimization with job security guarantee in Internet data center

    Get PDF
    With the proliferation of various big data applications and resource demand from Internet data centers (IDCs), the energy cost has been skyrocketing, and it attracts a great deal of attention and brings many energy optimization management issues. However, the security problem for a wide range of applications, which has been overlooked, is another critical concern and even ranked as the greatest challenge in IDC. In this paper, we propose an energy cost minimization (ECM) algorithm with job security guarantee for IDC in deregulated electricity markets. Randomly arriving jobs are routed to a FIFO queue, and a heuristic algorithm is devised to select security levels for guaranteeing job risk probability constraint. Then, the energy optimization problem is formulated by taking the temporal diversity of electricity price into account. Finally, an online energy cost minimization algorithm is designed to solve the problem by Lyapunov optimization framework which offers provable energy cost optimization and delay guarantee. This algorithm can aggressively and adaptively seize the timing of low electricity price to process workloads and defer delay-tolerant workloads execution when the price is high. Based on the real-life electricity price, simulation results prove the feasibility and effectiveness of proposed algorithm
    • ā€¦
    corecore