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A Data-Driven Approach to Measure Web Site Navigability 

Abstract  

Web site navigability refers to the degree to which a visitor can follow a Web site’s hyperlink structure to 

successfully find information with efficiency and ease. In this study, we take a data-driven approach to 

measure Web site navigability using Web data readily available in organizations. Guided by information 

foraging and information-processing theories, we identify fundamental navigability dimensions that should 

be emphasized in metric development. Accordingly, we propose three data-driven metrics—namely, power, 

efficiency, and directness—that consider Web structure, usage, and content data to measure a Web site’s 

navigability. We also develop a Web mining–based method that processes Web data to enable the 

calculation of the proposed metrics. We further implement a prototype system based on the Web mining–

based method and use it to assess the navigability of two sizable, real-world Web sites with the metrics. To 

examine the analysis results by the metrics, we perform an evaluation study that involves these two sites 

and 248 voluntary participants. The evaluation results show that user performance and assessments are 

consistent with the analysis results revealed by our metrics. Our study demonstrates the viability and 

practical value of data-driven metrics for measuring Web site navigability, which can be used for evaluative, 

diagnostic, or predictive purposes. 

 

Key Words: data-driven navigability metrics, Web mining, Web site navigability, Web site navigation, Web 

metrics  
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Introduction 

Web site design is crucial to the success of virtually all applications for e-commerce, digital government, 

and online learning. A well-designed site can attract visitors and help them find target information effectively 

and quickly [92]. In contrast, poorly designed sites hinder visitors’ information seeking and can lead to 

dissatisfaction and lost business revenues [35]. Navigation and search represent two principal means for 

finding information on a Web site [87]. This study focuses on navigation, which in general refers to the 

process of navigating through a Web site to find target information [60, 84]. According to Palmer [60], 

navigation is a fundamental and crucial way to locate information on Web sites. 

Essential to navigation is the structure of the hyperlinks that connect different pages on a Web site [5, 

81], which can significantly affect user experience and satisfaction [17, 58, 69, 77, 84]. However, many 

people still have difficulty finding information on a Web site [84], often because of its ineffective hyperlink 

structure [34, 58, 84], which inhibits visitor from finding target information, thereby leading to dissatisfaction 

[17, 58, 69, 77, 84]. 

We examine Web site navigability, defined as the degree to which a visitor can follow a Web site’s 

hyperlink structure to successfully find information with efficiency and ease [19, 52, 60]. People often find 

information on a Web site by sifting through its hyperlinks [58]; thus, a well-designed structure helps people 

locate information more effectively and quickly because it provides a mental model of the type and location 

of information that facilitates their path selections through the interconnected pages [84].  

Measurement is crucial to navigability. A review of extant information systems (IS) literature suggests 

the common use of perceptual measurements that target people’s self-reports; e.g., [19] and [60]. Although 

perceptual measurements are valuable for conveying a person’s assessment, we can analyze and 

measure navigability with a data-driven approach that considers readily available Web data, including Web 

content, structure (i.e., hyperlink structure), and usage data (i.e., Web logs). Such a data-driven approach 
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reflects visitors’ browsing behaviors and enables development of metrics that can be used in combination 

with perceptual measurements for a fuller depiction of a site’s navigability. Toward that end, analyzing Web 

data is promising and has been applied to develop navigability metrics; e.g., [9, 93, 94]. However, most 

previous studies that use Web data to develop navigability metrics have several limitations. First, choices of 

the focal aspect of navigability they target in metric development seem driven by observations or intuitions; 

e.g., [93, 94]. Thus, the resultant metrics tend to focus on a select navigability dimension, providing limited 

insight into a Web site’s navigability. Second, most existing metrics consider partial Web data, typically 

Web structural data (e.g., [9] and [93]), and therefore cannot fully convey a site’s navigability. The 

navigability of a Web site conceivably involves not only its hyperlink structure depicted by Web structure 

data but also visitors’ browsing behaviors informed through Web usage and content data. In addition, many 

previous studies tend to concentrate on metric development, often placing less attention on evaluations 

with actual users; consequently, they offer limited empirical evidence about the viability or pragmatic value 

of the proposed metrics; e.g., [9, 90]. To address these limitations, we aim to achieve the following 

objectives in this study:  

1. To propose data-driven navigability metrics that consider more comprehensive Web data, including 

Web content, structure, and usage data; 

2. To develop a viable Web mining–based method that enables the computation and use of the 

proposed metrics to measure Web site navigability systematically; and 

3. To perform a rigorous evaluation study to produce empirical evidence that a Web site’s navigability 

(e.g., high versus low), as revealed by our metrics, is congruent with actual user performance and 

assessments. 

We propose three metrics: power, which indicates the likelihood that a visitor can successfully find 

target information on a site by traversing its hyperlink structure; efficiency, which conveys the extent to 

which a visitor can quickly find target information on a site by navigating its hyperlink structure (e.g., using 
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less time or fewer clicks); and directness, which reflects the ease with which a visitor can decide where to 

move from the current page to the target information. Overall, our metric development is guided by 

information foraging theory [63, 65] and information-processing theory [53], which together point to several 

user-centric dimensions fundamental to Web site navigability: the likelihood of successfully, efficiently, and 

easily finding target information. Our metric formulations, anchored in the law of surfing [34], take as inputs 

a focal site’s hyperlink structure (derived from Web structure data) and user browsing behaviors (derived 

from Web usage and content data) to measure the site’s navigability quantitatively and comprehensively. 

To measure a site’s navigability, we develop a Web mining–based method that models the site’s hyperlink 

structure as a directed graph, distinguishes between content and index pages, and incorporates 

appropriate Web mining techniques to discover user visit patterns from Web logs. We empirically examine 

the proposed metrics by conducting an evaluation study that involves two large, real-world Web sites and 

248 voluntary participants. 

 

Literature Review 

Investigations of navigability appear in several research streams. In this section, we review prior research 

on navigation in general and navigability in particular, summarize representative studies that develop 

navigability metrics with Web data, and highlight the differences between our navigability metrics and 

existing ones. 

Web Site Navigation and Navigability 

Web site design includes multiple key elements that affect user performance and experience [36, 87]. 

Among them, navigation is crucial. People often visit Web sites to find information, whether their purpose is 

to buy directly, build knowledge, search, or deliberate [55, 76]. Many people attempt to locate target 
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information on a Web site [46]; as Spink and Cole [72] note, people visit Web sites to fulfill their information 

needs or interests. 

Navigation is crucial because it can significantly affect people’s assessments of a Web site [69; 80]; it 

also has substantial effects on user performance or actual use of a site [24]. To find information on a Web 

site, many people choose to follow the site’s hyperlink structure; therefore, by linking the different pages 

about various resources, products, or services with an effective structure, organizations can make their site 

more “navigable” by better facilitating visitors’ information seeking on the site [56]. According to Webster 

and Ahuja [84], navigation systems provide an important means for supporting people’s browsing and path 

selections to locate target information on a Web site.  

Navigability is closely related to navigation, but with some subtle differences. In general, navigation 

refers to the overall process of browsing a Web site to find information, whereas navigability, as we define 

herein, is specific to a Web site’s hyperlink structure and emphasizes the notion that visitors can follow the 

structure to find information successfully, efficiently, and easily. We note the efforts for measuring 

navigability with perceptual items. For example, de Castro et al. [19] measure navigability with question 

items germane to perceived ease of navigation, effectiveness, and efficiency; Palmer [60] proposes items 

that emphasize page sequencing, layout organization, and navigation protocol consistency. 

A review of previous research examining navigation or navigability converges on the importance of 

hyperlink structure and shows the availability of perceptual measurements for navigability. A Web site’s 

navigability, as we define herein, represents the confluence of its hyperlink structure and visitors’ browsing 

behaviors; therefore, navigability measurements may benefit from a data-driven approach that considers 

different, related Web data and targets the dimensions critical to visitors’ finding information on a Web site. 
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Measuring Navigability with Web Data 

Web data can be classified broadly as content, structure, or usage data [74]. Content data consist of Web 

page contents, such as texts on Web pages; structure data depict the hyperlink structure connecting 

different pages; and usage data are the records generated by users’ browsing on a Web site (i.e., Web 

logs1). Accordingly, Web mining can be classified on the basis of the particular Web data employed. Web 

content mining employs text mining techniques [85] to analyze Web content data and can support 

applications such as sentiment analysis, stylometric analysis, fake Web site detection, and Web information 

retrieval [1, 2, 3, 4, 24, 25, 85]; Web structure mining discovers patterns from hyperlink structures [13, 42]; 

and Web usage mining reveals visitors’ browsing patterns from Web usage data [26, 74]. Prior research 

has applied Web mining to study different aspects of Web sites, such as overall Web site success [70] and 

the effectiveness of automatically created index pages [62]. Web mining also has been used to measure 

site navigability, toward which we review representative studies in the following section.2  

Previous research has attempted to mine Web data to develop navigability metrics, with a common 

focus on Web structure data. Botafogo et al. [9] propose two metrics, compactness and stratum, to assess 

the connectedness and structural organization of a hypertext system. Several extensions also have been 

undertaken for hypertext or hypermedia systems [18, 51, 89]. For example, to measure the navigation of a 

hypermedia system, Yamada et al. [89] extend the metrics of Botafogo [9] by considering interface 

distance. Zhang et al. [93] measure navigability from a structural complexity perspective and propose 

several navigability metrics based on the total number of hyperlinks. Yen [90] develops a metric that 

considers a page more accessible than other pages if more hyperlinks point to that page and its source 

                                                      

1 A typical Web log record includes the IP address, time, and URL, which describe who accessed a page and when, the request 
status (i.e., success or failure), and the size of the data transmitted. 

2 Other issues surrounding navigability also have been studied [11, 66, 78], such as the development of data-gathering agents 
for navigability evaluation [66]. Because our focus is on navigability metrics, we do not provide a review of these studies.     
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pages are located closer to the homepage. Zhou et al. [94] use a Web site’s structure data, in combination 

with an emulated surfing model, to calculate its navigability. Efforts also are taken to develop navigability 

metrics with Web usage or content data, perhaps to a lesser extent. For example, Gupta et al. [31] analyze 

usage data and propose a click-ratio measure (i.e., the ratio of the number of clicks to the number of 

distinct pages in a visit session). Bayesian network models are developed to measure navigability at the 

site or page level; these models take Web content and structure data as inputs to calculate the navigability 

of a Web site [49, 83]. 

Our study differs from previous research on developing navigability metrics with Web data in several 

ways. First, our metrics emphasize three fundamental navigability dimensions: the likelihood, efficiency, 

and ease of finding information on a Web site. In contrast, many existing navigability metrics developed 

with Web data measure a select navigability dimension. For example, Gupta et al.’s [31] metric focuses 

only on the efficiency of finding information, and Zhou et al.’s [94] metric stresses the likelihood of finding 

information. Second, our metrics consider more comprehensive Web data (i.e., structure, usage, and 

content) than many existing metrics, such as [93] and [94]. Because navigability sits at the confluence of 

hyperlink structure and user browsing, metrics developed with partial Web data may not fully reveal a Web 

site’s navigability. Third, the formulations of our metrics are novel. Our metric formulations specify how to 

use the hyperlink structure and Web browsing behaviors extracted from Web structure, usage, and content 

data to measure a Web site’s navigability, according to fundamental navigability dimensions. 

 

Theoretical Foundations  

Conceptually, people’s information seeking on a Web site can be understood with information foraging 

theory [40, 63, 64, 65]. This theory extends optimal foraging theory [48] to explain how people find 

information in general; it posits that people develop strategies that optimize the utility of their information 
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gains in relation to the costs they incur. That is, a person moves through different states toward the goal 

state by choosing the most cost-effective paths and taking advantage of the support or cues available [63]. 

This process manifests a utilitarian consideration, grounded in the rational utility model for a spreading 

activation process that moves people through the hyperlink structure to find information on a Web site [27, 

63]. In this connection, visitors likely switch to another “path” if they expect their information gains (i.e., 

toward finding target information) along the current path to be lower than those along another path [27].  

According to information foraging theory, people are likely to modify their browsing strategies to 

maximize the rate at which they gain information, while minimizing the associated costs [40, 64, 65]. The 

selection or modification of a browsing strategy for finding information on a Web site can be enlightened by 

the information-processing theory [53], which stresses cognitive, mental processing and posits that people 

process the information they receive rather than merely respond to stimuli. That is, people normally process 

information through different thinking, analysis of stimuli, situational modifications, and obstacle 

evaluations, based on the information-processing model [79].  

Because of the enormous number of traversal paths available on a Web site, visitors might employ 

heuristic processing by using a mental model to choose an appropriate path to find the information they 

need [12], instead of engaging in systematic explorations that are tedious and demand stringent time and 

effort requirements. Taking online retail as an example, a vendor usually offers a wide array of products 

and provides voluminous, detailed service information, which makes a “brute force” way of finding 

information on the site impractical for visitors. People often have various time constraints (e.g., too many 

things competing for the finite time available) and are limited in their cognitive, mental processing capacity, 

which constitutes their bounded rationality [68]. With heuristic processing [12], visitors make judgments 

about their traversing paths (e.g., analysis of stimuli, situational modification, obstacle evaluation) to 

mitigate the associated costs, as measured by time, physical efforts, and cognitive processing.  
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These theories jointly imply that when attempting to find information on a Web site, visitors care about 

not only the likelihood of locating target information but also the efficiency and ease of doing so. The 

importance of efficiency and ease is consistent with a human-task interaction view [50], which suggests that 

the personal costs of performing a task include time and cognitive resources. To find information on a site, 

people must exert cognitive, mental efforts to analyze, estimate, and select appropriate paths to traverse. 

Their browsing behavior can be further informed by personal construct theory [41], which describes the 

phase-based process of construction people experience as they build a world view by assimilating 

information on a Web site. Through this process, which is intricately interwoven with cognitive, mental, and 

physical activities, visitors move toward the target information using sense-making, which involves several 

realms of activity, such as physical actions and cognitive efforts, associated with the process and its 

phases [44]. The underlying sense-making process is congruent with cost–benefit theory [75], which posits 

that rational actors select a path only if the benefits of doing so outweigh the associated costs.  

In summary, these theories explicitly highlight the importance of successfully, efficiently, and easily 

finding information, which in turn reveals several dimensions to be emphasized in our metric development. 

Efficiency can be evaluated in terms of physical effort or time [44, 69], and ease can be assessed with 

cognitive, mental processing [50]. The physical efforts a person spends to find information on a Web site 

can be measured as the number of clicks, which is highly correlated with the time a person needs to find 

information on the site [69]. Accordingly, our metric development targets the followings: how likely a person 

is to find target information successfully on a site, the number of clicks needed to do so, and the ease of 

choosing among possible links from a current page. The navigability dimensions we target reflect a user-

centric orientation; people, because of their time and cognitive-processing constraints, prefer paths that 

maximize their likelihood of successfully finding information yet still require few clicks and minimal cognitive 

processing. Guided by these theories, we develop three data-driven metrics that correspond to the 
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respective navigability dimensions, use comprehensive Web data, and analyze them in the light of the law 

of surfing. 

 

Method and Metrics for Measuring Navigability 

In this section, we first describe a Web mining-based method that enables the calculation of navigability 

with our metrics, and then detail our development of each metric. 

A Web Mining–Based Method for Measuring Navigability 

Measuring a Web site’s navigability requires proper representation of its hyperlink structure, effective 

discovery of users’ information-seeking targets, and rigorous assessment of how well the hyperlink 

structure facilitates their achievement of such targets. Because a Web site resembles a complex graph 

[20], we apply graph theory [86] to represent a site’s hyperlink structure. Web mining offers a viable means 

for analyzing visitors’ browsing behaviors on a site [45, 54, 88]. Thus, we apply appropriate Web mining 

techniques to Web usage and content data to reveal important regularities in users’ browsing—namely, 

access patterns. We then use access patterns to approximate users’ information-seeking targets. Finally, 

we build on the law of surfing [34] to develop data-driven metrics for navigability by examining how well a 

Web site’s hyperlink structure enables visitors to find target information on the site successfully, efficiently, 

and easily. 

As Figure 1 shows, our method first processes Web logs to identify visit sessions and then parses a 

focal site to produce parsed pages. We classify each parsed page as either a content or an index page; the 

content pages, together with the identified visit sessions, serve as inputs to access pattern mining to 

discover access patterns. Our method constructs a distance matrix that represents the site’s hyperlink 

structure; this matrix, in combination with the identified access patterns, allows for calculation of the focal 
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site’s navigability, according to the proposed metrics. In the following, we detail each step of the method, 

except the navigability calculation step, which we defer to the next subsection. 

<Insert Figure 1 here> 

Web log preprocessing. Analysis of Web logs requires preprocessing, which includes cleaning, 

session identification, and session completion [16]. Our method cleans Web logs by removing accessory 

log records created in response to objects embedded in a user-requested page (e.g., pictures). Log records 

produced by Web spiders (i.e., programs launched by a search engine to gather Web pages) are also 

removed, because they do not reflect visitors’ browsing. We analyze the cleaned logs to identify sessions 

that constitute the basic units for access pattern discovery. A session is a sequence of Web page accesses 

during a visit to a Web site [16]. Web log records have no explicit session designations; to identify sessions, 

our method takes a 30-minute timeout approach that has been shown to be effective for session 

identification [71]. Each session is then completed by identifying the pages accessed by the visitor but not 

recorded in logs (i.e., cached pages) 3 and including these pages in the session. To identify accesses to 

cached pages, our method adopts the heuristics of Cooley et al. [16].  

Web site parsing. Our method parses the focal site by gathering its pages and extracting their 

important features. It uses a spider program to gather all the pages on the site; each page is then parsed 

for important features, including the number of outgoing links, the number of internal outgoing links (i.e., 

hyperlinks pointing to pages on the same site), the number of external outgoing links (i.e., hyperlinks 

pointing to pages not on the same site), the size (measured by the number of bytes), the number of words, 

and the number of anchor text words. We do not include hyperlinks that point to anchors on the same page 

when analyzing the features of a Web page. 

                                                      

3 Previously accessed pages can be cached at a proxy server or a client machine; revisits to these pages therefore may not be 
recorded in server-side Web logs, though they are part of a session. 
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Web page classification. A page can be classified as a content page or an index page [73]. Index 

pages help people navigate a site and usually have many hyperlinks pointing to other pages but little 

content [62], whereas content pages contain specific information (e.g., product description) and normally 

have fewer hyperlinks than index pages. Content pages often constitute targets of visitors’ information 

seeking [73], whereas index pages are means to such targets; we therefore use sequences of content 

pages that users frequently access to approximate their information-seeking targets.4 The sheer number of 

pages available on a Web site makes manual classification of pages tedious and ineffective. Thus, our 

method builds an automatic classifier with a support vector machine [82], which is effective in classifying 

tasks [38].5 The classifier classifies pages as index or content pages on the basis of their respective 

features identified previously. To apply the classifier to classify pages, we assembled a training sample of 

200 randomly selected pages from the focal site. Two domain experts highly knowledgeable in Web site 

design manually classified each page; they then met to reach an agreement on each classification result 

through face-to-face discussions. The resultant tagged pages were used to train the classifier, which was 

then applied to classify each page of the site.  

Access pattern mining. Our method uses frequently accessed sequences of content pages (i.e., 

access patterns) as proxies for information-seeking targets. For example, people frequently visit a 

university’s Web site to find tuition information and then payment instructions. In this case, the information-

seeking target can be approximated by the access sequence of the two content pages: the tuition 

information page and the payment instructions page. Access patterns can be discovered from Web logs. In 

particular, preprocessed Web logs are represented as S={si}, i = 1, 2, …, k, where si is a session and k 

                                                      

4 The results of our evaluation task selections in the Section of Evaluation Study and Data Collection also suggest that content 
pages are much more likely to constitute visitors’ information-seeking targets than index pages and that frequently accessed 
sequences of content pages approximate common information-seeking targets reasonably well. 

5 We constructed our classifier with the SVM-light implementation [31].  
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denotes the number of sessions. For each session si in S, index page accesses are removed from si. Thus, 

a session si can be represented as a sequence of m content pages consecutively visited in the session, si 

=<pi,1, pi,2, …, pi,m>, where pi,j refers to the jth-visited content page in si, j = 1, 2, …, m. An access sequence 

of content pages, u = <q1, q2, …, qn>, denotes a sequence of content pages accessed consecutively, 

where ql is the lth-visited page in u, l = 1, 2, …, n. An access sequence, u = <q1, q2, …, qn>, is defined as 

contained in a session si =<pi,1, pi,2, …, pi,m> if and only if there exists z, 1≤ z ≤ m – n + 1, such that  

ql = pi, l+z–1, for l = 1, 2, …, n. If an access sequence is contained in a session, it occurs. We calculate the 

occurrence rate v(u) of an access sequence u as the ratio of the number of sessions that contain the 

sequence to the total number of sessions. Key access sequences have an occurrence rate that exceeds a 

prespecified threshold; the set of all key access sequences entails the access patterns. Extracting all the 

key access sequences from logs is a nontrivial task. The problem space is enormous because of the 

exponential number of candidate sequences attainable by exhausting all plausible permutations of content 

pages and the sheer volume of records in logs. Major algorithms for the efficient discovery of frequent 

sequences from large amounts of data include the AprioriAll [6], SPADE [91], and PrefixSpan [21, 61] 

algorithms. Among them, PrefixSpan is generally the most advantageous in terms of running time and 

memory usage [21, 61]. We therefore adopt PrefixSpan to discover key access sequences from logs. 

Hyperlink structure representation. A site’s hyperlink structure is represented by a distance matrix in 

which pages are indexes and the distance between any two pages is an element. We model the focal site 

as a directed graph (i.e., pages as vertices and hyperlinks as edges) and measure the distance between 

two pages according to the distance definition in graph theory [86]; that is, the distance from page A to 

page B on a site is the length of the shortest path from A to B, as measured by the number of hyperlink 

clicks. The distance is ∞ if no path exists from page A to page B. To construct a distance matrix, we define 

Y(p,y) as a set of pages, where the distance from page p to any page in Y(p,y) is y clicks. By the definition 

of Y(p,y), we have 



 14

Y(p,0) = {p}. (1) 

We represent the set of Web pages pointed to by the hyperlinks on page p as T(p), which can be 

discovered by parsing page p. The distance from page p to any page in T(p) –Y(p,0) is one click; that is,  

Y(p,1) = T(p) – Y(p,0). (2) 

Generalizing (2), we have 
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jpYkT  consists of all pages distant from page p by y clicks. Figure 2 summarizes the 

procedure for calculating Y(p,y) for all the pages on a site, which also identifies the shortest path between 

any two connected pages. Constructing a distance matrix from Y(p,y) is straightforward and not described.  

<Insert Figure 2 here> 

Data-Driven Metrics for Measuring Navigability 

Corresponding to the fundamental dimensions of navigability suggested by the guiding theories, we 

develop three metrics—power, efficiency, and directness—that can be formally defined, quantitatively 

calculated, and empirically examined. As mentioned, these navigability metrics, which use the focal site’s 

hyperlink structure and the identified access patterns as inputs, are premised in the law of surfing [34], 

which identifies regularities in Web surfing behaviors by characterizing the number of hyperlinks clicked 
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during a visit session with a probabilistic distribution. Specifically, the law of surfing states that the 

probability p(k) of surfing k hyperlinks in a session can be expressed as 
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where the mean of the probability distribution (i.e., average number of hyperlinks surfed in a session) is α 

and the scale parameter β determines the shape of the probability distribution. The parameters α and β can 

be estimated from visit data recorded in Web logs [34]. The law of surfing offers a robust analysis of Web 

browsing behaviors and formally reveals the prominent regularities of Web surfing depth [27, 32, 47]. 

We define G(l) as the probability of surfing at least l hyperlinks during a session, which is the sum of 

p(k), where k ≥ l, 
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Using Equations (4) and (6), we can derive G(l) from l = 1, and G(∞) = 0. We can now propose the three 

metrics.  

Power. We use the key access sequences, discovered from Web logs, to approximate visitors’ 

information-seeking targets. Let U be a set of n key access sequences discovered from logs, U = {ui}, i = 1, 

2, …, n, and ui = <pi,1, pi,2, …, pi,m>, where pi,j  is the jth-visited content page in ui, j = 1, 2, …, m. For an 

information-seeking target approximated by a key access sequence ui, power R(ui) can be measured as the 

probability of locating all the content pages in ui sequentially, from pi,1 to pi,m. Let ps denote the start page of 

seeking for ui. If ps ≠ pi,1, the distance from ps  to the first sought page pi,1, d(ps, pi,1), can be derived from 
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the distance matrix (constructed in the hyperlink structure representation step).6 Visitors willing to surf at 

least d(ps, pi,1) hyperlinks can locate pi,1 from ps. According to Equation (6), G(l) is the probability of surfing 

at least l hyperlinks; therefore, the probability of surfing at least d(ps, pi,1) hyperlinks is G(d(ps, pi,1)). 

Accordingly, the probability of locating pi,1 from ps can be approximated as G(d(ps, pi,1)). After locating pi,1, a 

visitor can continue to locate pi,2, and the probability of locating pi,j from pi,j-1 also can be approximated as 

G(d(pi,j-1, pi,j)), where 2 ≤ j ≤ m. If ps ≠ pi,1, the power R(ui|ps) of locating ui becomes 

1,
2

,1,1,  if)),(()),(()|( is

m

j

jijiissi ppppdGppdGpuR ≠= ∏
=

− . (7) 

Likewise, if ps = pi,1, we obtain 

1,
2

,1,  if                    )),(()|( is

m

j

jijisi ppppdGpuR == ∏
=

− . (8) 

Let P(start of seeking for ui = ps) be the probability of seeking for ui starting from page ps, which can be 

estimated from surfing data recorded in Web logs. For example, if we observe in Web logs the following 

sessions that record the seeking of target information ui—<homepage ui >, <homepage ui >, <page1 ui >, 

<page1 ui >, <page2 ui >—seeking of ui would start from the homepage, page1, or page2, with probability 

P(start of seeking for ui = homepage) = 0.4, P(start of seeking for ui = page1) = 0.4, and  

P(start of seeking for ui = page2) = 0.2. Accordingly, we can calculate the R(ui) as 

∑
∀

==
sp

sisii puRpuPuR )|() for seeking ofstart ()( . (9) 

Not all key access sequences are equally important. We therefore introduce a weight w(ui) of ui in U, 

calculated as  

                                                      

6 We consider two scenarios of seeking for ui : starting from any page but the first page in ui (i.e., ps ≠ pi,1) or starting from the 
first page in ui (i.e., ps = pi,1) 
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where v(ui), the occurrence rate of ui, is identified from the access pattern mining step. Therefore, the 

power R(U) of a Web site can be measured as the weighted probability of achieving each information-

seeking target in U on the Web site  

∑
=

=
n

i

ii uRuwUR
1

)()()( . (11) 

Power, R(U), falls inclusively between 0 and 1 and generally can reveal the probability that a visitor 

achieves an information-seeking target by navigating through a Web site’s hyperlink structure. When  

R(U) = 0, no information-seeking targets can be achieved; when R(U) = 1, all targets can be achieved with 

a probability of 1. The higher the value of R(U), the more powerful is a Web site’s hyperlink structure design 

for helping visitors locate target information on the site.  

Efficiency. In general, the closer a page is to the currently visited page, the more efficient it is to locate 

that page. For an information-seeking target approximated by a key access sequence ui=<pi,1, pi,2, …, pi,m>, 

given that seeking for ui starts from page ps≠pi,1, the efficiency Q(ui|ps) of achieving the information-seeking 

target can be measured as ∑
=

−+
m

j

jijiis ppdppd
2

,1,1, ),(),( , where d(x, y) denotes the distance from page x 

to page y. By normalizing the efficiency metric onto [0,1], we obtain  
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where m is the number of content pages in ui; the function min(x, y) returns the smaller value between x 

and y, and γ>1 is a constant. A page is considered most efficient to locate if it is one click away; it is least 

efficient to locate if it is γ or more clicks away. We set γ to an appropriate value such that the probability of 

surfing γ or more clicks (i.e., G(γ)) becomes trivial. Similarly,  
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We can then derive Q(ui) as follows: 

∑
∀

==
sp

sisii puQpuPuQ )|()  for seeking ofstart ()( . (14) 

In turn, we can measure the efficiency Q(U) of a Web site as the weighted efficiency of locating each 

information-seeking target in U on the Web site. That is,  

∑
=

=
n

i

ii uQuwUQ
1

)()()( . (15) 

The term Q(U) indicates the efficiency of locating an information-seeking target on a scale of [0,1], with 

0 being the least efficient (i.e., average distance to the visitor-sought content pages is γ or more clicks 

away) and 1 being the most efficient (i.e., all visitor-sought content pages are only one click away). The 

higher the value of Q(U), the more efficient it is for a visitor to locate the target information on a Web site.  

Directness. Visitors are likely to find target information with fewer clicks if we add more hyperlinks 

pointing to content pages on each page. At an extreme, efficiency Q(U) becomes 1 when each page has 

hyperlinks pointing to all content pages on the site; that is, all content pages are only one click away from 

any page, which obviously is not a good design. Placing more hyperlinks on a page makes it increasingly 

difficult for visitors to decide on their next move. Given an information-seeking target approximated by a key 

access sequence ui=<pi,1, pi,2, …, pi,m> and that seeking for ui starts from ps≠pi,1, directness L(ui | ps) can be 

measured as ∑
=

−+
m

j

jijiis ppNppN
2

,1,1, ),(),( , where N(x,y) denotes the average number of hyperlinks on the 

pages located on the shortest path from x to y (identified in the hyperlink structure representation step) and 

N(x,y) is ∞ if there is no path from x to y. By normalizing the directness measure onto [0,1], we obtain 
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where the function min(x, y) returns the smaller value between x and y and δ is a constant, δ > 1. Visitors 

have less difficultly deciding on their next move if the current page contains only one hyperlink but more 

difficultly if the current page contains δ or more hyperlinks. The value of δ can be user specified or set to an 

adequate constant, according to a generally accepted usability guideline (e.g., [30]). Similarly,  
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We can derive L(ui) as 

 ∑
∀

==
sp

sisii puLpuPuL )|()  for seeking ofstart ()( . (18) 

We can then calculate the directness L(U) of a Web site as the weighted directness of achieving each 

information-seeking target in U on the site:  

∑
=

=
n

i

ii uLuwUL
1

)()()( . (19) 

Directness, L(U), is within [0,1] and indicates the degree of ease of deciding on the next navigation 

move: 0 indicates the most difficulty, and 1 indicates the least. The higher the value of L(U), the easier it is 

for a visitor to decide on the next move.  

Our proposed metrics are distinct but related. For example, although efficiency and directness 

measure different fundamental aspects of navigability, they can be correlated because visitors’ cognitive 

load may increase as they click more to find information on a Web site. Figure 3 summarizes the procedure 

for using access patterns and the distance matrix of a Web site as inputs to produce power, efficiency, and 

directness scores that jointly convey the site’s navigability.  

<Insert Figure 3 here> 
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Implementation and Illustrations 

To demonstrate the viability of our method and metrics, we developed a prototype system that follows the 

method described in Figure 1. We employed SpidersRUs [14] to parse a Web site (step 2 in Figure 1).7 We 

used the prototype system to analyze and compare the navigability of two large sites in the higher 

education domain: Site A and Site B.8 The sites are built and administered by two comparable public 

research universities in the United States (Site A university and Site B university hereinafter) that offer 

comprehensive degree programs at graduate and undergraduate levels and have approximately 30,000 

faculty, staff, and students. These two sites serve similar user populations and have a comparable number 

of pages (i.e., Site A has 4,277 pages: 3,840 content pages and 437 index pages; Site B has 4,118 pages: 

3,738 content pages and 380 index pages). Overall, we chose these Web sites primarily because they are 

from the same domain, are comparable in size, serve similar purposes and user populations, and have 

highly similar content and traffic, which can reduce the threat of potential confounding factors pertaining to 

Web site domain, size, objectives, or user groups.  

From each site, we collected Web logs generated over a four-week window. The logs from Site A 

contained 35,966,494 records, from which we preprocessed and identified 732,321 sessions. The logs from 

Site B consisted of 32,170,062 records, from which we identified 555,299 sessions. We first derived the 

actual distribution of session size (i.e., the number of clicks per session) from the preprocessed logs to 

estimate the parameters α and β in Equation (4). By applying nonlinear regression to the actual distribution 

of session size, we obtained least square estimates for α (= 2.68) and β (= 10.97) for Site A. The fit 

between Equation (4) and the actual distribution of session size was statistically significant, p < 0.0001 and 

                                                      

7 To parse a site, SpidersRUs specifies the homepage URL as the seed. When accessing a page, SpidersRUs downloads the 
page and extracts all the hyperlinks on the page; it then downloads each of the pages pointed to by the extracted hyperlinks 
and extracts the hyperlinks on that page. SpidersRUs continues this process until exhausting all the pages on the site. 

8 Both sites are the main sites of their respectively served universities, e.g., www.university-name.edu. 
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R2 = 0.92. For Site B, the estimated α and β were 2.99 and 10.40, respectively. The fit between Equation 

(4) and the actual distribution of session size was also statistically significant, p < 0.0001 and R2 = 0.97. We 

then used the α and β estimates to calculate G(•), according to Equations (4) and (6). For both sites, we set 

γ in Equation (12) to 10 because G(10), or the probability of accessing pages 10 or more clicks away, 

seems trivial (i.e., < 0.005). Consistent with the Google Webmaster guidelines [30], we set δ in Equation 

(16) to 100 for both sites. Table 1 summarizes the specific parameter values used to assess the navigability 

of each site. 

<Insert Table 1 here> 

After determining these parameter values, we used the prototype system to assess each site’s 

navigability. When mining key access sequences from Web logs, we initially set the threshold at 0.05%, 

because a large number of sessions in Web logs favor small thresholds to keep a reasonable number of 

discovered sequences. To ensure the reliability and robustness of our evaluation results, we conducted a 

series of trials at threshold values between 0.05% and 0.175%, in increments of 0.025%. Table 2 

summarizes the metric scores calculated for each site.  

<Insert Table 2 here> 

According to our metrics, the navigability of Site A seemed better than that of Site B, across the range 

of threshold values. On average, Site A recorded higher scores in power, efficiency, and directness, 

showing 19.6%, 12.8%, and 11.7% differentials, respectively. To provide a proper anchor for interpreting 

the between-site differences, we identified additional 18 comparable university sites and calculated the 

range of each metric’s value across Site A, Site B, and these additional sites with a threshold value of 

0.05%. According to our analysis, power ranged between 0.50 and 0.77 (average = 0.71, standard 

deviation = 0.06), efficiency between 0.75 and 0.89 (average = 0.85, standard deviation = 0.03), and 

directness between 0.20 and 0.60 (average = 0.40, standard deviation = 0.12). In this light, the difference 

between Site A and Site B in each metric seems substantial; i.e., at least 15% of the maximum difference 
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across the 20 sites. For example, across the 20 sites, the maximum difference of power is 0.27 (i.e., 0.77 – 

0.50). The difference in power between the two sites we studied is 0.12 (i.e., 0.75 – 0.63), which is 44% of 

the maximum difference.9 

We evaluated power and efficiency according to the distance between the starting page of a session 

and the first content page sought in a key access sequence and then the distance between successively 

sought content pages in that sequence. In general, the greater these distances, the lower are the power 

and efficiency. Our analysis showed that these distances were consistently greater on Site B than on Site 

A. For example, on average a content page appearing in the top-10 most frequently visited key access 

sequences was 1.7 clicks away on Site A, whereas a similar content page on Site B was 2.3 clicks away. 

Both sites had low directness scores and the directness difference between Site A and Site B was smaller 

than that of power or efficiency. The low directness scores could be partly attributed the fact that each site 

contains many content pages that inevitably increase the likelihood of having many hyperlinks on a page; 

as a result, it is difficult for visitors to decide on their next move from the currently visited page. Moreover, 

both sites feature frequently visited index pages, each of which contains many hyperlinks. While serving as 

springboards for navigation, these index pages also make it difficult for visitors to decide on which hyperlink 

to click next.  

To empirically examine the navigability analysis results revealed by our metrics, we collected user 

performance and assessments by conducting an evaluation study. According to our metrics, Site A has 

higher navigability than Site B; accordingly, we anticipate that people will be more likely to find information 

successfully with fewer clicks and less cognitive processing on Site A than on Site B. Furthermore, as an ex 

post facto comparison, we used the collected user performance and assessment data to further assess our 

                                                      

9  The difference between Site A and Site B in power, efficiency, and directness is about 2 times, 3 times, and 0.5 times of their 
respective standard deviation. 
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metrics versus prevalent navigability metrics such as that developed by Zhou et al. [94]. In the following, we 

describe our evaluation study design and data collection. 

Evaluation Study and Data Collection 

In our evaluation study, we asked voluntary participants to complete 12 information-seeking tasks on an 

investigated site. Our overall objective was to assess whether visitors are more likely to find target 

information successfully, efficiently, and easily on a Web site of high navigability than on one of low 

navigability, as revealed by our metrics. In this section, we describe our study design, tasks, participants, 

measurements, and data collection. 

Study design. Despite their similarity in purpose, populations served, content, and traffic, Site A has 

considerably higher navigability than Site B. We recruited participants from both universities and asked 

them to complete specific information-seeking tasks on the respective sites. Each participant used one of 

the investigated sites to complete the tasks, and the Web site assignment was random; that is, a participant 

might or might not use his or her own university’s site.  

Our evaluation also addressed the significance of user familiarity. In general, users’ familiarity with a 

site can influence their performance and satisfaction. For example, people highly familiar with a Web site 

understand its structural design and content layout; they are more likely to find information on the site than 

on an unfamiliar site and are less likely to become confused or “lost” [29]. High familiarity enables visitors to 

minimize the number of clicks necessary to find information [29], partly because of reduced trial-and-error 

behaviors [23]. According to Galletta et al. [28], people can complete more information-seeking tasks on a 

familiar site than otherwise. Visitors usually choose a surfing path because they believe it will lead them to 

target information; familiarity with the site’s structure facilitates their choice making [7]. The performance 

improvement resulting from users’ familiarity with a Web site aligns with the power law of practice [39], 

which suggests search effectiveness and efficiency gains through repeated visits, which reduce 
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information-seeking difficulty and complexity. When visiting a familiar site, people can find information with 

less cognitive attention [8] and thus exhibit greater satisfaction [57]. As Galletta et al. [29] note, when 

navigability is problematic, its adverse influences on people’s navigation can be mitigated by user familiarity 

with the site. Furthermore, the negative impact of low familiarity can be reduced when the site offers high 

navigability; that is, people are more likely to find information on an unfamiliar site when the site is more 

navigable. Our analysis showed that participants in general were more familiar with their university’s site 

than with the other site. With navigability (i.e., high versus low) and familiarity (i.e., high versus low), we 

created four experimental conditions and assigned participants to each randomly, while mindfully balancing 

the total number of participants in each group.  

Tasks. We analyzed each site’s Web logs to identify frequently sought content page sequences (i.e., 

key access sequences). We conducted a pretest with 256 participants from Site A university and 165 

participants from Site B university. All participants reviewed 20 pages from their own university site (10 

content and 10 index pages), randomly selected from the pages on the site, and indicated whether the 

presented page provided information they searched for frequently, on a five-point Likert scale (1 = “not at 

all,” 5 = “very high”). The pretest participants from both universities were comparable in age, number of 

years at the current university, gender composition, and self-reported familiarity with their own university 

site. According to the paired sample t-test results for Site A, content pages were more likely to constitute 

information-seeking targets than index pages (3.48 versus 1.90, t = 31.15, d.f. = 255, p < 0.001); we noted 

similar results for Site B (2.99 versus 1.91, t = 17.07, d.f. = 164, p < 0.001). These participants then 

received 10 key access sequences of content pages and 10 nonkey access sequences of content pages 

(i.e., sequences of low visit frequency) from their own university site, all randomly selected from our access 

pattern mining results. For each sequence, a participant specified his or her need, desire, or interest in 

seeking the pages in that sequence, on a five-point Likert scale (1 = “no need, desire or interest at all,” 5 = 

“great need, desire or interest”). According to our analysis, for both universities, the need, desire, or interest 
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was significantly higher for key than for nonkey access sequences: Site A: 3.48 versus 1.30, t = 59.23, d.f. 

= 255, p < 0.001; and Site B: 2.99 versus 1.33, t = 37.24, d.f. = 164, p < 0.001. According to our pretest 

results, content pages were more likely to constitute information-seeking targets than index pages, and key 

access sequences identified from Web logs were consistent with users’ common information-seeking 

needs, desires, or interests.  

Next, we verified the frequently sought key access sequences by surveying another random sample of 

20 participants from each university. Each reviewed 20 frequently sought key access sequences we 

discovered from his or her own university’s Web logs and specified the frequency with which he or she 

would access each sequence, on a five-point Likert scale (1 = “never” and 5 = “once or several times a 

month, or more frequently”). According to our analysis, participants from both universities frequently sought 

15 key access sequences; that is, students shared some similarity in their information needs and interests 

(e.g., the operating hours of the campus medical center).10 In our evaluation study, we used 3 of these 15 

key access sequences as warm-up exercises and the remaining as the information-seeking tasks to be 

performed by participants in the evaluation study. Among the 12 tasks included in our study, half were low 

in complexity (e.g., only one page in the access sequence) and the others high in complexity (e.g., multiple 

pages in the sequence). Appendix A lists all the tasks. 

Participants. We recruited participants among the business undergraduate students enrolled in similar 

information systems or operations classes in both universities.11 Participation was voluntary, and each 

participant received $10 for his or her time and efforts. To solicit best efforts, we offered substantial, 

additional monetary incentives to top performers in the study; i.e., those who successfully completed the 

                                                      

10 The two sites use different wordings to describe highly similar, if not identical, resources, services, or information. For 
example, Site A used “contact information and hours of the student health center” for information about the campus medical 
center’s contact information and operating hours, and Site B used “contact information and operating hours of the main 
campus medical center.”  

11 Although students, faculty, staff, and external visitors could use a site, students constitute a crucial user group. They 
substantially outnumbered faculty and staff combined and often used the university’s site to obtain information.  
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greatest number of tasks in the least amount of time. Instructors assisted in our recruitment, and a 

student’s decision to participate had no effect on his or her class grade.  

Measurements. We examined user performance by focusing on effectiveness and efficiency. 

Specifically, we used three measures: task success rate, task time, and the number of clicks to complete a 

task. We assessed effectiveness with task success rate, which is the ratio of the number of successfully 

completed tasks (i.e., participant finding the target page) to the total number of tasks to be performed in the 

study. We measured the click requirement with the exact number of clicks a participant used in a task. We 

also measured the amount of time (in seconds) a participant spent on a task, which closely relates to the 

number of clicks and offers another perspective on user performance efficiency. Participants had up to four 

minutes to complete each task.12 We collected participants’ self-reports about the cognitive-processing load 

required, after they had completed all the tasks, which indicates the cognitive processing they underwent 

when choosing paths to access the target information. We used five items adapted from Hong et al. [33] 

and Palmer [60] to measure cognitive-processing load, with minor wording changes appropriate for our 

context; all the items employed a seven-point Likert scale (1 = “strongly disagree,” 7 = “strongly agree”). 

Appendix B lists the measurement items for cognitive-processing load. To various extents, these 

measurements corresponded with our metrics: task success rate for power, the number of clicks for 

efficiency, and cognitive-processing load for directness.  

Data collection. We conducted the evaluation study in multiple sessions, all administered in a 

designated computer laboratory at each university.13 Before each session, we read a script to inform the 

participants of the study’s purpose, answered questions, and addressed any privacy-related concerns. We 

                                                      

12 We administered this maximal time limit to keep the experiment at a reasonable duration. This time limit seemed adequate 
because the vast majority of pilot study participants completed each task within three minutes. 

13 We conducted six experimental sessions at Site A university, which were administered by the same two investigators; seven 
sessions were conducted at Site B university, all administered by the same investigator. All sessions followed the same 
procedure regardless of their locations or administrators.  
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explicitly stated our intent and commitment to performing data analyses at aggregate levels, without using 

any personally identifiable information. We obtained written consent from each participant and promised 

convenient access to the data he or she provided in the study. We then collected some demographic data 

from participants, described the overall study flow and the tasks to be performed, and provided warm-up 

exercises until each participant signaled readiness for the study. Then, participants received packets that 

detailed each task, together with target page screenshots they could use to verify whether they had 

completed that task. We used client-side monitoring software to record the exact starting and ending time 

of each task, the number of clicks, and the specific pages accessed. By comparing the recorded pages a 

participant accessed with the target page(s), we determined whether he or she had successfully completed 

a task. After completing all the tasks, participants filled out a questionnaire survey that gathered their 

cognitive processing. 

 

Data Analyses and Results 

We performed a pilot study to reexamine the items for cognitive-processing load and to fine-tune our study 

flow and data collection procedure. In total, 39 undergraduate students—17 from Site A university and 22 

from Site B university—enrolled in a required information systems or operations management class took 

part in the pilot study voluntarily. Each participant followed the described study flow and completed the 12 

information-seeking tasks. According to our analysis, these participants understood the tasks clearly and 

knew exactly what they needed to do in each task; more than 99% were able to complete a task within 

three minutes. We used their responses to assess the reliability of the items for cognitive-processing load. 

The Cronbach’s alpha was 0.95 for cognitive-processing load, exceeding the common threshold of 0.7 [59].  

We then conducted an evaluation study with 248 participants (128 from Site A university and 120 from 

Site B university). As Table 3 summarizes, participants were comparable in terms of age and gender 
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composition; we noted no significant between-group differences in general computer efficacy, Internet 

usage, or familiarity with the randomly assigned site they used in the study. In addition, participants 

reported higher familiarity with their university’s site than with the other site, and the difference was 

statistically significant.14 We reexamined the reliability of our cognitive-processing measurements and noted 

a Cronbach’s alpha greater than 0.90, suggesting adequate reliability. 

<Insert Table 3 here> 

To compare user performance and assessments between the two Web sites, we aggregated the data 

associated with each site, across participants and tasks, and used them to perform a series of paired t-

tests. As Table 4 shows, the task success rate associated with Site A was significantly higher than that of 

Site B (0.90 versus 0.78, p < 0.001). The time requirements associated with Site A were significantly lower 

than those of Site B (40.25 versus 65.70, p < 0.001), as was the number of clicks (3.69 versus 6.08, p < 

0.001) and the cognitive-processing load (2.83 versus, 3.94, p < 0.001).15 Overall, our results showed that 

participants were more likely to find information successfully, efficiently, and easily on Site A than on Site B, 

which is congruent with the analysis results revealed by our metrics.  

<Insert Table 4 here> 

We further compared user performance between the two sites by separating tasks germane to high 

versus low complexity. We then combined the data associated with tasks from each site to create two data 

sets: one pertaining to low-complexity tasks and the other to high-complexity tasks. We used each data set 

to further compare user performance between sites by performing paired t-tests. For low-complexity tasks, 

user performance seemed better on Site A than on Site B, and the differences were statistically significant: 

                                                      

14 We performed a manipulation check in the experiment, which indicated that participants were significantly more familiar with 
their university’s site than with the other site; unpaired t-test results showed a significant between-group difference: 4.68 
versus 1.10, t = 28.66, p < 0.001, on a seven-point Likert scale (1 = “extremely unfamiliar,” 7 = “extremely familiar”).  

15 The time requirements and number of clicks we report do not incur any penalty for failed tasks. That is, for each task a 
participant failed to complete successfully, we used the exact amount of time and the number of clicks he or she took in the 
task. If considering any penalty, we expect greater differences in user performance between the two sites. 
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task success rate (0.97 versus 0.79, p < 0.001), time requirements (27.35 versus 36.61, p < 0.001), and 

number of clicks (2.35 versus 3.15, p < 0.001). We found similar results for high-complexity tasks, and the 

differentials appeared greater in magnitude: task success rate (0.83 versus 0.67, p < 0.001), time 

requirements (53.14 versus 94.79, p < 0.001), and number of clicks (5.03 versus 9.01, p < 0.001). Table 5 

summarizes the comparative user performance results by task complexity, which does not include the 

cognitive-processing load because we gathered participants’ assessments of cognitive processing after 

they completed all the tasks. Our results showed that participants were more likely to find information 

successfully and efficiently on Site A than on Site B, regardless of task complexity.  

<Insert Table 5 here> 

We also compared user performance between the two sites by taking into account participants’ 

familiarity with the site they used; i.e., their own university’s site or the other site. We combined the data 

from each site that were generated by the participants familiar with the site versus those produced by their 

unfamiliar counterparts, thereby creating two data sets: one germane to high familiarity and the other to low 

familiarity. We used each data set to perform paired t-tests that enabled us to understand user performance 

between the two sites when participants were familiar versus not familiar with the site. When participants 

were familiar with the site, user performance was better on Site A than on Site B, and the differences were 

statistically significant: task success rate (0.93 versus 0.80, p < 0.001), time requirements (29.76 versus 

56.06, p < 0.001), number of clicks (3.39 versus 5.76, p < 0.001), and cognitive-processing load (2.62 

versus 3.48, p < 0.001). We found similar results when participants were not familiar with the site they 

used: task success rate (0.87 versus 0.77, p < 0.001), time requirements (50.90 versus 74.33, p < 0.001), 

number of clicks (3.99 versus 6.36, p < 0.001), and cognitive-processing load (3.05 versus 4.35, p < 0.001). 

Table 6 summarizes our comparative results in terms of participants’ familiarity with the site, which shows 

that participants were more likely to find information successfully, efficiently, and easily on Site A than on 

Site B, regardless of whether they were familiar with the site.  
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<Insert Table 6 here> 

We examined the performance of the participants from each university who used different Web sites; 

specifically, we aggregated the participants by university to create two data sets: participants from Site A 

university versus those from Site B university. In each data set, approximately half the participants used 

their own university’s site, and the others used the other site. For example, among the 120 participants we 

recruited from Site B university, 60 used their own university’s site in the study. With these data, we 

performed paired t-tests to examine user performance across the universities. For participants recruited 

from Site A university, we noted better user performance when they used Site A rather than Site B, with 

statistically significant differences: task success rate (0.93 versus 0.77, p < 0.001), time requirements 

(29.76 versus 74.33, p < 0.001), number of clicks (3.39 versus 6.36, p < 0.001), and cognitive-processing 

load (2.62 versus 4.35, p < 0.001). We found similar results for participants recruited from Site B university, 

though the differences were smaller in magnitude, with the exception of time requirements (50.90 versus 

56.06, p > 0.05): task success rate (0.87 versus 0.80, p < 0.001), number of clicks (3.99 versus 5.76, p < 

0.001), and cognitive-processing load (3.05 versus 3.48, p < 0.05). Table 7 summarizes the comparative 

results by grouping participants by university; as shown, our overall results imply that visitors’ familiarity 

with a Web site cannot compensate for its low navigability.  

<Insert Table 7 here> 

In addition to empirically testing the comparative analysis results revealed by our metrics, we used the 

experimental data to perform an ex post facto comparison with a Markov model–based navigability 

measure (MNav), which has been shown to be more effective than many existing navigability measures 

[94]. This measure is developed with Web structure data and a Markov model that emulates users’ 

browsing behaviors. Specifically, at time t = 0,1,2,…, a visitor’s current position is represented by a vector  

p(t) = (p1(t), p2(t), …, pn-1(t), pn(t)), where pi(t), i = 1, 2, …, n-1, denotes the probability at page i, and pn(t) is 

the probability at the virtual stopping state, which indicates the termination of browsing on a site. Let P be 



 31

the matrix of transition probabilities; each element of P represents the probability of transiting from one 

page to another. According to [94], p(t) is calculated as  

tPpPtptp )0()1()( =−= . (20) 

Equation (20) converges at time T; the MNav score of a site then can be calculated as the probability not in 

the virtual stopping state; i.e., 1-pn(T). The greater the MNav score of a site, the higher is the site’s 

navigability [94].  

We used Equation (20) to calculate the respective MNav scores of Site A and Site B, following the 

procedure and parameter settings by Zhou et al. [94]. We obtained a MNav score of 0.66 for Site A and 

0.67 for Site B, suggesting comparable navigability between the two sites, though Site B has a slightly 

higher navigability. This result contradicts the comparative analysis revealed by our metrics and is not 

supported by our user evaluation data that show that Site A has higher navigability than Site B. The 

comparative analysis by the MNav measure may have several limitations. First, this measure does not 

consider Web usage and content data in its calculation. To derive the transition probability matrix P, the 

MNav measure instead assumes that each hyperlink on a page has equal probability of being clicked. This 

assumption may not always hold, because a hyperlink a visitor will click on may depend on his or her 

information-seeking target as well as his or her estimate of the hyperlink’s likelihood of leading to the target. 

As a result, some hyperlinks could be clicked more frequently than others rather than equally. By analyzing 

visitors’ browsing behaviors recorded in Site A’s Web logs, we noted that, on average, 10% of hyperlinks 

on a page drew nearly 60% of the clicks on that page. Taking the most frequently visited page of Site A as 

an example, among 120 hyperlinks on this page, the most frequently clicked hyperlink attracted 19% of the 

total clicks. We also analyzed Site B’s logs and noted a similarly skewed distribution of hyperlink clicks. 

Second, the MNav measure assumes that all visits start from the homepage and accordingly sets the 

vector p(0). By examining the logs of Site A and Site B, we found that more than 20% of visit sessions 
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started from pages other than the homepage. Furthermore, prior Web usage analyses do not support this 

assumption [43]. These questionable assumptions can constrain the use of p(0) and P to represent Web 

surfing behaviors, which affects the accuracy of p(t) as calculated by Equation (20) and thus hinders the 

effectiveness of the MNav measure for revealing a Web site’s navigability. In contrast, our metrics consider 

Web structure and content data and are calculated with actual Web surfing behaviors recorded in Web 

logs, rather than making assumptions about surfing behaviors. Thus, the comparative analysis revealed by 

our metrics is congruent with the actual user performance and assessments observed in the evaluation 

study.  

We further examined our metrics with additional sites beyond the education domain. Specifically, we 

identified from WebsiteReview (http://www.websitereview.net/), which provides user evaluations of 

navigation on different sites, three pairs of Web sites for shopping, sports, and recreation. In each pair of 

sites, one is high in navigation and the other low in navigation, according to the user evaluations.16 We 

examined these sites to test whether the navigability results revealed by our metrics are consistent with the 

user evaluations of navigation. For each site, we used our method to extract its content and structure; we 

simulated Web logs by following the method of Liu et al. [47] because the usage data (i.e., Web logs) are 

not publicly available. This method, which simulates the random walk of information foraging agents (e.g., 

visitors) on a Web site to generate artificial logs for the site, has been shown to be capable of generating 

synthetic Web logs that demonstrate the regularities observed in actual Web logs, such as the law of 

surfing [47]. By applying our method to a site’s content, structure, and simulated logs, we then calculated its 

scores for power, efficiency, and directness. Table 8 shows the power, efficiency, and directness scores of 

each site, in conjunction with user navigation evaluation of that site. By grouping the sites by domain (e.g., 

                                                      

16 Each site is 'low' or 'high' in navigation, according to the user ratings on a 5-point scale, with 1 being the lowest and 5 being 
the highest. In our study, we chose two sites from the same domain that have noticeable differences in the navigation rating. 
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Shopping-1, Shopping-2), we note that the navigability revealed by our metrics is consistent with the user 

evaluations, across all three pairs of sites we analyzed. We also compared our metrics with the MNav 

measure by Zhou et al. [94], in relation to the user evaluations. According to the MNav measure, Shopping-

1 has navigability comparable to that of Shopping-2, Sports-1 is more navigable than Sports-2, and 

Recreation-1 is more navigable than Recreating-2. These results are not consistent with the user 

evaluations. Overall, our analyses of these sites show that the navigability revealed by our metrics is 

consistent with user evaluation results available at WebsiteReview, while the navigability analyses by the 

MNav measure contradict the user evaluations results. Last, we benchmarked our metrics against the 

measure by Yen [90] in Appendix C.  

<Insert Table 8 here> 

Extensions to Proposed Metrics 

Our metrics can be extended in several ways. For example, our metrics could be extended to compare the 

navigability of Web sites that vary in scale (i.e., different numbers of pages) or domain (e.g., commerce 

versus education). In general, it is more difficult to find information on a larger Web site than on a smaller 

one. In this case, we could introduce a scale factor to account for the difference in scale, as measured by 

the number of pages on a Web site. For example, consider two sites: site one with n1 pages and site two 

with n2 pages; we can define the scale factor as n1/n2. When comparing the navigability of the sites, we 

multiply each metric score of site one by the scale factor to accommodate for the scale difference. Similar 

accommodations may be needed for cross-domain comparisons because the scale may vary with domain; 

for example, a university site could have more pages than an e-government site. Visitors’ browsing 

behaviors may also differ across domains. Thus, the navigability of a Web site, as suggested by our 

metrics, should be interpreted in terms of how well its hyperlink structure facilitates visiting behaviors 

specific to that domain. 
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In addition, our metrics can be extended with the combined use of search engine. Toward that end, 

several factors should be properly considered. For example, we need to estimate the probability of a 

visitor’s use of search engine versus browsing the hyperlink structure to find information. Such probabilities 

could be estimated by analyzing Web logs. The effectiveness of search engine is relevant as well (e.g., the 

probability that the links returned by a search engine point to the target information). Several measures 

commonly used in information retrieval (e.g., recall, precision) offer logical ways to assess a search 

engine’s effectiveness [67]. The remaining distance, from the results returned by a search engine to the 

target information, also needs to be estimated. For example, the search results returned by a search 

engine could be displayed over multiple pages; in this case, if a hyperlink that points to the target page 

appears on the kth page of the results, the target page is then k clicks away, after using the search engine. 

We therefore should evaluate the average distance traversed to a target page after using a search engine.  

Finally, we could integrate power, efficiency, and directness for a single, holistic measure. Specifically, 

we calculate overall navigability with the harmonic mean, a common approach of combining multiple 

measures to produce a holistic measure [22, 37, 67]. For power R(U) > 0, efficiency Q(U) > 0, and 

directness L(U) > 0, the harmonic mean of these metrics is  
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where O(U) is bounded within [0,1]. In addition, O(U) = 0 if R(U) = 0, or Q(U) = 0, or L(U) = 0; O(U) = 1 if 

R(U) = Q(U) = L(U) = 1. Apparently, the greater the value of O(U), the better is a site’s overall navigability. 
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Discussion  

Our study has several implications for practice. Although information seeking is a common reason people 

visit Web sites, many sites remain difficult to navigate, hindering user experience and satisfaction [58]. 

Toward that end, we provide three data-driven metrics and a viable method for assessing a Web site’s 

navigability. Supported by our method and metrics, organizations can evaluate and monitor their sites’ 

navigability continually or even implement an automatic alert mechanism if the navigability, as revealed by 

our metrics, falls below a specified threshold. Organizations also can use our metrics to record navigability 

longitudinally and analyze essential patterns or emerging trends to generate insights into the conditions that 

yield high or low navigability. Use of our navigability metrics can augment existing Web analytical tools 

(e.g., Omniture, WebTrends) by providing normative or diagnostic analyses. Also, organizations modify 

their sites periodically for improved user performance, such as by comparing alternative designs. Using our 

metrics and method, Web site administrators could quickly predict the impact of each design on 

navigability. To do so, they could synthesize artificial Web logs using Liu et al.’s [47] method, which 

simulates the random walk of information foraging agents (e.g., visitors) on a site and thereby generates 

artificial logs. Employing our metrics and artificial logs, Web site administrators could predict the navigability 

of alternative designs, choose the promising designs that yield high navigability scores, and then use 

existing evaluation methods to evaluate the promising designs only. This capability offers benefits because 

time constraints often make it difficult for Web site administrators to undertake full alternative design 

evaluations, particularly those involving a large number of users. In addition, our metrics and method can 

be used prescriptively by helping organizations identify promising areas for improving their existing 

hyperlink structure design. For example, by sorting key access sequences by their weights and then by 

their navigability scores (power, efficiency, directness), organizations could identify sequences that have 

high weights but are low in navigability. Such sequences in turn highlight important bottlenecks for 
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navigability; i.e., frequently visited sequences (high weight) that are not effectively facilitated by the existing 

hyperlink structure design (low navigability); mitigating these bottlenecks could improve a Web site’s 

navigability substantially.  

Our study has several limitations that deserve future research attention. First, we targeted university 

Web sites, and therefore our results may not be equally applicable to sites with very different structures, 

such as social networking or wiki sites. Our spiders and page parsers offer limited utilities for Web 2.0 sites 

and interactive contents (e.g., Flash or Ajax based); extensions are needed to process such contents. The 

two Web sites we studied have little Web 2.0 and interactive contents; however, to apply our methods to 

sites rich in such contents, our spiders must be able to download interactive contents and our page parser 

must extract links and other features from these contents. Second, although our study is appropriate for our 

objectives and intended comparison, it targets a specific scenario. Understandably, Web sites may vary in 

their relative strengths and weaknesses; therefore, we should perform empirical evaluations in different 

scenarios. For example, comparing a site high in power but low in directness with another site low in power 

but high in directness is essential; similarly, assessing user performance and assessments on two sites that 

are comparable in navigability is also critical because it allows us to demonstrate that user performances 

do not differ when there is no difference in navigability, according to our metrics. Third, our metrics and 

method should be extended by considering additional factors that affect navigation, such as navigation aids 

(e.g., back button) and information scent [15]. For example, the importance of a page could be estimated 

with anchor text or font size of the main text [10]. Links located in prominent locations on a site and with 

anchor text in a large font size or a sharp color may be more likely to be clicked by users. Multimedia, 

including images and movies, are important page properties as well and may affect the likelihood of a 

visitor’s clicking on a link. Although our proposed metrics and method can shed light on probable problem 

areas of a site’s hyperlink structure, formal algorithms and implementable methods are needed for 

prescriptive purposes. Finally, efforts are also needed to combine our data-driven metrics and salient 
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perceptual measures for assessing Web site navigability, preferably by involving different user groups, work 

contexts, or domains (e.g., e-commerce, digital government, online learning).  

 

Conclusion  

The main research contribution of our study lies in the development of three data-driven metrics for 

measuring Web site navigability. We use established theories to guide our choices of the fundamental 

navigability dimensions to emphasize and propose specific data-driven metrics (i.e., power, efficiency, and 

directness) that correspond to these dimensions respectively. Premised in the law of surfing, we formulate 

our metrics by considering Web structure, usage, and content data. By integrating appropriate Web mining 

techniques, we develop a method for calculating a Web site’s navigability according to our metrics, which 

explicitly specifies the input Web data and their transformations and analyses. In addition, we demonstrate 

the viability and practical value of our metrics and method by implementing a prototype system, and we use 

it to assess the navigability of two sizable, real-world Web sites. We perform an evaluation study by 

comparing the user performance observed on the respective sites and thus produce empirical evidence 

suggesting that people are more likely to find information successfully, efficiently, and easily when the site 

has high navigability, as revealed by our metrics.  
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 Table 1: Key Parameter Values Used for Each Investigated Web Site 

 Site A Site B 

α 2.68 2.99 
β 10.97 10.40 
γ 10 10 
δ 100 100 

 

 

Table 2: Evaluation Results for Navigability (Site A versus Site B) 

Threshold Value 

Power Efficiency Directness 

Site A Site B Site A Site B Site A Site B 

0.05% 0.75 0.63 0.87 0.77 0.42 0.36 

0.075% 0.77 0.64 0.88 0.77 0.42 0.37 

0.1% 0.78 0.65 0.88 0.78 0.41 0.37 

0.125% 0.78 0.66 0.89 0.79 0.41 0.37 

0.15% 0.79 0.66 0.89 0.79 0.42 0.38 

0.175% 0.80 0.66 0.89 0.79 0.42 0.38 

 

 

Table 3: Comparative Analysis of Participants from the Studied Universities 

Dimension Participants from Site A 
University 

Participants from Site B 
University 

Average age 24.79; range: 19-52 23.53; range: 16-60 
Gender Male: 90 (70.3%) 

Female: 38 (29.7%) 
Male: 72 (60%) 
Female: 48 (40%) 

Major Business: 127 (99.2%) 
Not declared: 1 (0.8%) 

Business: 110 (91.7%) 
Not declared: 10 (8.3%) 

 
Status in university 

Freshman: 43 (33.6%) 
Sophomore: 31 (24.2%) 
Junior: 29 (22.7%) 
Senior: 25 (19.5%) 

Freshman: 10 (8.3%) 
Sophomore: 28 (23.3%) 
Junior: 26 (21.7%) 
Senior: 56 (46.7%) 

General computer efficacy 5.72 (out of 7) 5.85 (out of 7) 
Internet technology competence 5.3 (out of 7) 5.5 (out of 7) 

Web browsing capability 5.4 (out of 7) 5.8 (out of 7) 
Familiarity with studied Web site 3 (out of 7) 3 (out of 7) 

Internet usage 14.8 hours a week 18.2 hours a week 
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Table 4: User Performance Comparisons: Site A versus Site B 

Measurement Site N Mean Standard Deviation t-value p-value Difference 

Task success rate 
A 121 0.90 0.10 

7.37 < 0.001 0.12 
B 127 0.78 0.15 

Time requirements 
A 121 40.25 20.29 

-9.67 < 0.001 -25.45 
B 127 65.70 21.11 

Number of clicks 
A 121 3.69 1.40 

-11.54 < 0.001 -2.39 
B 127 6.08 1.84 

Cognitive-processing load 
A 121 2.83 1.06 

-7.20 < 0.001 -1.10 
B 127 3.94 1.34 

Note: 121 participants used Site A (61 from Site A University and 60 from Site B university); 127 
participants used Site B (67 from Site A University and 60 from Site B university). 

 

Table 5: User Performance Comparisons in Low- versus High-Complexity Tasks 

Task 
Complexity 

Measurement Site N Mean 
Standard 
Deviation 

t-value p-value Difference 

Low 

Task success rate 
A 121 0.97 0.07 

7.50 < 0.001 0.17 
B 127 0.79 0.25 

Time requirements 
A 121 27.35 15.31 

-4.03 < 0.001 -9.26 
B 127 36.61 20.56 

Number of clicks 
A 121 2.35 1.31 

-4.13 < 0.001 -0.80 
B 127 3.15 1.71 

High 

Task success rate 
A 121 0.83 0.18 

5.70 < 0.001 0.17 
B 127 0.67 0.27 

Time requirements 
A 121 53.14 30.75 

-10.34 < 0.001 -41.65 
B 127 94.79 32.60 

Number of clicks 
A 121 5.03 2.24 

-11.90 < 0.001 -3.98 
B 127 9.01 2.99 

 



 45

          Table 6: User Performance Comparison When Users Have High versus Low Familiarity 

Familiarity Measurement Site N Mean Standard Deviation t-value p-value Difference 

High 

Task success rate 
A 61 0.93 0.09 

6.68 < 0.001 0.13 
B 60 0.80 0.13 

Time requirements 
A 61 29.76 12.21 

-9.78 < 0.001 -26.30 
B 60 56.06 16.96 

Number of clicks 
A 61 3.39 1.17 

-8.81 < 0.001 -2.37 
B 60 5.76 1.73 

Cognitive-processing 
load 

A 61 2.62 1.09 
-3.89 < 0.001 -0.85 

B 60 3.48 1.31 

Low 

Task success rate 
A 60 0.87 0.10 

4.13 < 0.001 0.10 
B 67 0.77 0.16 

Time requirements 
A 60 50.90 21.37 

-6.25 < 0.001 -23.43 
B 67 74.33 20.82 

Number of clicks 
A 60 3.99 1.55 

-7.65 < 0.001 -2.37 
B 67 6.36 1.90 

Cognitive-processing 
load 

A 60 3.05 1.00 
-6.48 < 0.001 -1.30 

B 67 4.35 1.24 

 
                   Table 7: User Performance Comparison: Participants from Site A versus Site B University 

University Measurement Site N Mean Standard Deviation t-value p-value Difference 

Site A 
University 

Task success rate 
A 61 0.93 0.09 

6.86 < 0.001 0.16 
B 67 0.77 0.16 

Time requirements 
A 61 29.76 12.21 

-14.93 < 0.001 -44.57 
B 67 74.33 20.82 

Number of clicks 
A 61 3.39 1.17 

-10.72 < 0.001 -2.97 
B 67 6.36 1.90 

Cognitive-processing 
load 

A 61 2.62 1.09 
-8.35 < 0.001 -1.73 

B 67 4.35 1.24 

Site B 
University 

Task success rate 
A 60 0.87 0.10 

3.58 < 0.001 0.08 
B 60 0.80 0.13 

Time requirements 
A 60 50.90 21.37 

-1.46 0.150 -5.16 
B 60 56.06 16.96 

Number of clicks 
A 60 3.99 1.55 

-5.92 < 0.001 -1.78 
B 60 5.76 1.73 

Cognitive-processing 
load 

A 60 3.05 1.00 
-2.01 0.047 -0.43 

B 60 3.48 1.31 
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         Table 8: Comparison of Proposed Metrics and MNav with User Evaluations of Navigation 

 Shopping-1 Shopping-2 Sports-1 Sports-2 Recreation-1 Recreation-2 

Power 0.74 0.79 0.36 0.61 0.73 0.82 

Efficiency 0.86 0.88 0.73 0.83 0.86 0.88 

Directness 0.16 0.45 0.32 0.51 0.36 0.53 

User evaluations Low High Low High Low High 

MNav 0.71 0.71 0.74 0.56 0.72 0.69 

 

Web Logs Focal Web Site

Step 1: Web Log Preprocessing

Identified Visit 
Sessions

Step 2: Web Site Parsing 

Classified Content Pages

Step 4: Access
Pattern Mining

Access 
Patterns

Step 5: Hyperlink Structure 

Representation

Distance Matrix of Web Pages

Step 6: Calculating Navigability 

Scores with Proposed Metrics

Navigability Scores
of Focal Site

…

Step 3: Web Page 

Classification

Parsed Pages

Figure 1: Web Mining–Based Method for Measuring Navigability 
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Figure 2: Calculation of Y(p,y) 

 
 

 
Figure 3. Measuring a Web Site’s Power, Efficiency, and Directness 

 
 
 
 

      Input: a set of Web pages in a Web site 
     Output: Y(p,y) for each Web page p in the Web site 

 
for each Web page p 
 find T(p) by parsing Web page p 
end for 
for each Web page p 
      i = 0  
     Y(p,i) = {p} 
      while Y(p,i) ≠Ø 
 Y(p,i+1) = Ø 
  for each k∈Y(p,i)  

      for each h∈T(k) 
             if h ∉Y(p,j) for all 0 ≤ j ≤ i 
   Y(p,i+1) = Y(p,i+1)∪ {h} 

                     end if    
      end for 

  end for 
  i = i+1 
     end while 
end for 

 Input: a set of key access sequences U = {ui}, i = 1, 2, …, n 
a distance matrix of a Web site 

 Output: power R(U), efficiency Q(U), directness L(U) of a Web site 
 

 calculate G(l) using (4) and (6) 
 for each ui = <pi,1, pi,2, …, pi,m> in U 
      calculate its weight w(ui) using (10) 

 for each start page ps 
        if ps≠pi,1 
             retrieve d(ps, pi,1) from the distance matrix 
        end if 
        retrieve d(pi,j-1, pi,j), 2 ≤ j ≤ m form the distance matrix  
        calculate power R(ui | ps) using (7) or (8) 
        calculate efficiency Q(ui | ps) using (12) or (13) 
        calculate directness L(ui | ps) using (16) or (17)  
 end for 
 calculate R(ui), Q(ui), and L(ui) using (9), (14), and (18) respectively 

 end for 

 calculate R(U), Q(U), and L(U) using (11), (15) and (19) respectively 
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Appendix A: Warm-Up Exercises and Information-Seeking Tasks 

Warm-Up Exercises: 

1: Find the location of the College of Business Administration and the dean’s bio.  

2: Find the university’s president’s name.  

3: Find the page containing current campus news and then the page containing the information about the 

university (e.g., facts, history, etc.).  

 

Information-Seeking Tasks: 

1: Find the location and operating hours of the Campus Main Library. 

2: Find the page containing the description of the University Athletics and then the page containing the 

description of the University Football team.  

3: Find the location and hours of the Office of Academic Advising and then the Office of Career Services.  

4: Find the page containing a list of current campus events. 

5: Find the location and store hours of the Campus Bookstore. 

6: Find parking permit rates and how to buy parking permits.  

7: Find the contact information and operating hours of the Campus Medical Center. 

8: Find the Academic Calendar of the current academic year and then the dates for Spring break. 

9: Find the class schedule of the current semester and then the location of a specific course. 

10: Find the page containing Campus Directory and then the page containing Campus Map and Directions. 

11: Find the page containing Campus Recreation Services and then the page containing Campus Sports 

Clubs.  

12: Find the Tuition and Rates of the current semester and how to pay tuition.  

 

Appendix B: Measurement Items Used in the Study 

Cognitive Processing Load (sources: [33, 60])  

CPL-01: In the study, it generally took me a lot of processing efforts to figure out how to find a target 

page/content on the Web site. 

CPL-02: I needed a lot of thinking when deciding how to navigate from a current page towards the target 

page/content on the Web site. 

CPL-03: In general, I spent a lot of cognitive efforts to find a target page/content on the Web site. 
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CPL-04: Generally speaking, my navigating the Web site to locate a target page/content was cognitively 

demanding. 

CPL-05: Overall, I incurred a significant cognitive load when trying to find a target page/content on the Web 

site. 

 

Appendix C: Comparing Proposed Metrics and Additional Benchmark Measure  

We benchmarked the proposed metrics against the accessibility measure developed by Yen [90], which 

evaluates a Web site’s navigation according to the ease of accessing a page through the site’s hyperlink 

structure. When a site is high in accessibility, it is easier for visitors to find information on the site. 

According to Yen [90], the accessibility of a page is higher if more hyperlinks point to it and its source 

pages (i.e., pages with a hyperlink pointing to that page) are located closer to the homepage. For Sites A 

and B, we calculated the accessibility of each page, as summarized in Table C1. 

Table C1. Accessibility Measure 

 Site A Site B 

Page accessibility: mean  0.98 1.34 

Page accessibility: standard deviation 5.00 5.79 

 

We performed Welch’s t-test to compare the page accessibility of both sites; the page accessibility of Site A 

is significantly lower than that of Site B (t-value = 2.64, p < 0.01). This comparative analysis suggests that 

visitors can find information more easily on Site B than on Site A, a finding that contradicts our user 

evaluation results, in which participants were able to located target pages more successfully and easily on 

Site A than on Site B. Web site navigation should be assessed at the confluence of the hyperlink structure 

and user browsing behaviors [11, 52, 60]; it manifests how well a Web site’s hyperlink structure enables 

visitors to find information by navigating the site. In this light, the proposed metrics consider more 

comprehensive Web data and therefore can better reveal navigability by producing analytical evaluation 

results congruent with actual user performance, assessment, and satisfaction. 

 


