702 research outputs found

    Exact solution of the Hu-Paz-Zhang master equation

    Get PDF
    The Hu-Paz-Zhang equation is a master equation for an oscillator coupled to a linear passive bath. It is exact within the assumption that the oscillator and bath are initially uncoupled . Here an exact general solution is obtained in the form of an expression for the Wigner function at time t in terms of the initial Wigner function. The result is applied to the motion of a Gaussian wave packet and to that of a pair of such wave packets. A serious divergence arising from the assumption of an initially uncoupled state is found to be due to the zero-point oscillations of the bath and not removed in a cutoff model. As a consequence, worthwhile results for the equation can only be obtained in the high temperature limit, where zero-point oscillations are neglected. In that limit closed form expressions for wave packet spreading and attenuation of coherence are obtained. These results agree within a numerical factor with those appearing in the literature, which apply for the case of a particle at zero temperature that is suddenly coupled to a bath at high temperature. On the other hand very different results are obtained for the physically consistent case in which the initial particle temperature is arranged to coincide with that of the bath

    Density matrix operatorial solution of the non--Markovian Master Equation for Quantum Brownian Motion

    Full text link
    An original method to exactly solve the non-Markovian Master Equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak coupling limit is reported. By using a superoperatorial approach we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.Comment: 16 pages, 1 figur

    Complex Numbers, Quantum Mechanics and the Beginning of Time

    Full text link
    A basic problem in quantizing a field in curved space is the decomposition of the classical modes in positive and negative frequency. The decomposition is equivalent to a choice of a complex structure in the space of classical solutions. In our construction the real tunneling geometries provide the link between the this complex structure and analytic properties of the classical solutions in a Riemannian section of space. This is related to the Osterwalder- Schrader approach to Euclidean field theory.Comment: 27 pages LATEX, UCSBTH-93-0

    Decoherence scenarios from micro- to macroscopic superpositions

    Full text link
    Environment induced decoherence entails the absence of quantum interference phenomena from the macroworld. The loss of coherence between superposed wave packets depends on their separation. The precise temporal course depends on the relative size of the time scales for decoherence and other processes taking place in the open system and its environment. We use the exactly solvable model of an harmonic oscillator coupled to a bath of oscillators to illustrate various decoherence scenarios: These range from exponential golden-rule decay for microscopic superpositions, system-specific decay for larger separations in a crossover regime, and finally universal interaction-dominated decoherence for ever more macroscopic superpositions.Comment: 11 pages, 7 figures, accompanying paper to quant-ph/020412

    Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole. We explain how the stochastic gravity formalism can be a useful tool for that purpose within a low-energy effective field theory approach to quantum gravity. As an explicit example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a three-dimensional hypersurface. We emphasize the need for understanding and designing operational ways of probing quantum metric fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief discussion of their relevance included. To appear in the proceedings of the 10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Kcne2 deletion causes early-onset nonalcoholic fatty liver disease via iron deficiency anemia

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is an increasing health problem worldwide, with genetic, epigenetic, and environmental components. Here, we describe the first example of NAFLD caused by genetic disruption of a mammalian potassium channel subunit. Mice with germline deletion of the KCNE2 potassium channel {beta} subunit exhibited NAFLD as early as postnatal day 7. Using mouse genetics, histology, liver damage assays and transcriptomics we discovered that iron deficiency arising from KCNE2-dependent achlorhydria is a major factor in early-onset NAFLD in Kcne2(-/-) mice, while two other KCNE2-dependent defects did not initiate NAFLD. The findings uncover a novel genetic basis for NAFLD and an unexpected potential factor in human KCNE2-associated cardiovascular pathologies, including atherosclerosis

    Tension term, interchange symmetry, and the analogy of energy and tension laws of the AdS soliton solution

    Full text link
    In this paper, we reconsider the energy and tension laws of the Ricci flat black hole by taking the contribution of the tension term into account. After this considering and inspired by the interchange symmetry between the Ricci flat black hole and the AdS soliton solution which arises from the double analytic continuation of the time and compact spatial direction, we find out the analogy of the energy and tension laws of the AdS soliton solution. Moreover, we also investigate the energy and tension laws of the boosted Ricci flat black hole, and discuss the boosted AdS soliton solution. However, although there is the same interchange symmetry between the boosted Ricci flat black hole and boosted AdS soliton, the analogy of laws of the boosted AdS soliton solution may be of no sense for the existence of the closed timelike curves and conical singularity. In spite of that, the conserved charges such as the energy and momentum of the boosted AdS soliton are well-defined, and an interesting result is that its energy is lower than that of the static AdS soliton. On the other hand, note that although the laws obtained above are the same as those of the asymptotically flat case, the underlying deduced contents are different. Thus, our results could also be considered as a simple generalization to the asymptotically AdS case. Moreover, during the calculation, we find that there may be a new way to define the gravitational tension which can come from the quasi-local stress tensor of the counter-term method.Comment: V4: 15 pages, no figure, version to appear in JHE

    A review on conductive common-mode EMI suppression methods in inverter fed motor drives

    Get PDF
    The impact of electromagnetic interference (EMI) is an increasingly important aspect of the performance of switching inverters. The challenges of managing EMI continue to grow with the emergence of wide bandgap (WBG) devices, the trend towards ever-greater integration and higher power rating. This paper reviews suppression methods for the conductive common-mode (CM) EMI in inverter fed motor drives. In order to span EMI suppression across the full system design process, the review considers both mitigation from the sources and suppression along the conduction paths. Furthermore, the shortcomings and merits of the reviewed publications are discussed, and their attenuation frequency range and attenuation level are compared. It is demonstrated that the CM EMI at low frequency is mainly determined by the PWM strategies and can be reduced or even theoretically eliminated through zero common-mode control. On the other hand, the CM EMI at high frequency is markedly influenced by the switching transients of the power devices. Thus, various drive circuits are reviewed which improve the switching behavior. Finally, the deployment of passive and active filters to suppress or compensate for the EMI is discussed

    A review of modeling and mitigation techniques for bearing currents in electrical machines with variable-frequency drives

    Get PDF
    The converter switching in variable-frequency drives can generate high frequency common mode voltage between the machine winding and the converter ground, leading to high frequency parasitic currents which can flow through the machine bearings unless precautions are taken in design and installation. These parasitic and unintended currents in the bearings cause deterioration of the lubrication film and surface damage to the rolling elements of the bearings. These problems will be exacerbated as wide-bandgap semiconductors with faster switching rise times start becoming more widespread in variable-frequency drives. This paper reviews the modelling and mitigation techniques of high frequency bearing currents in inverter fed AC drives. It aims to provide a solid base for the research community to further understanding the bearing currents phenomenon and helping to find novel improved technique for their mitigation and measurement

    Dynamics of barrier penetration in thermal medium: exact result for inverted harmonic oscillator

    Get PDF
    Time evolution of quantum tunneling is studied when the tunneling system is immersed in thermal medium. We analyze in detail the behavior of the system after integrating out the environment. Exact result for the inverted harmonic oscillator of the tunneling potential is derived and the barrier penetration factor is explicitly worked out as a function of time. Quantum mechanical formula without environment is modifed both by the potential renormalization effect and by a dynamical factor which may appreciably differ from the previously obtained one in the time range of 1/(curvature at the top of potential barrier).Comment: 30 pages, LATEX file with 11 PS figure
    corecore