1,134 research outputs found

    Quantum phase transition in the Frenkel-Kontorova chain: from pinned instanton glass to sliding phonon gas

    Full text link
    We study analytically and numerically the one-dimensional quantum Frenkel-Kontorova chain in the regime when the classical model is located in the pinned phase characterized by the gaped phonon excitations and devil's staircase. By extensive quantum Monte Carlo simulations we show that for the effective Planck constant \hbar smaller than the critical value c\hbar_c the quantum chain is in the pinned instanton glass phase. In this phase the elementary excitations have two branches: phonons, separated from zero energy by a finite gap, and instantons which have an exponentially small excitation energy. At =c\hbar=\hbar_c the quantum phase transition takes place and for >c\hbar>\hbar_c the pinned instanton glass is transformed into the sliding phonon gas with gapless phonon excitations. This transition is accompanied by the divergence of the spatial correlation length and appearence of sliding modes at >c\hbar>\hbar_c.Comment: revtex 16 pages, 18 figure

    Renormalization and Quantum Scaling of Frenkel-Kontorova Models

    Full text link
    We generalise the classical Transition by Breaking of Analyticity for the class of Frenkel-Kontorova models studied by Aubry and others to non-zero Planck's constant and temperature. This analysis is based on the study of a renormalization operator for the case of irrational mean spacing using Feynman's functional integral approach. We show how existing classical results extend to the quantum regime. In particular we extend MacKay's renormalization approach for the classical statistical mechanics to deduce scaling of low frequency effects and quantum effects. Our approach extends the phenomenon of hierarchical melting studied by Vallet, Schilling and Aubry to the quantum regime.Comment: 14 pages, 1 figure, submitted to J.Stat.Phy

    A simple variational approach to the quantum Frenkel-Kontorova model

    Full text link
    We present a simple and complete variational approach to the one-dimensional quantum Frenkel-Kontorova model. Dirac's time-dependent variational principle is adopted together with a Hatree-type many-body trial wavefunction for the atoms. The single-particle state is assumed to have the Jackiw-Kerman form. We obtain an effective classical Hamiltonian for the system which is simple enough for a complete numerical solution for the static ground state of the model. Numerical results show that our simple approach captures the essence of the quantum effects first observed in quantum Monte Carlo studies.Comment: 12 pages, 2 figure

    Transient Dynamics in Magnetic Force Microscopy for a Single-Spin Measurement

    Full text link
    We analyze a single-spin measurement using a transient process in magnetic force microscopy (MFM) which could increase the maximum operating temperature by a factor of Q (the quality factor of the cantilever) in comparison with the static Stern-Gerlach effect. We obtain an exact solution of the master equation, which confirms this result. We also discuss the conditions required to create a macroscopic Schrodinger cat state in the cantilever.Comment: 22 pages 2 figure

    Spin Diffusion and Relaxation in Solid State Spin Quantum Computer

    Full text link
    The processes of spin diffusion and relaxation are studied theoretically and numerically for quantum computation applications. Two possible realizations of a spin quantum computer (SQC) are analyzed: (i) a boundary spin chain in a 2D spin array and (ii) an isolated spin chain. In both cases, spin diffusion and relaxation are caused by a fast relaxing spin located outside the SQC. We have shown that in both cases the relaxation can be suppressed by an external non-uniform magnetic field. In the second case, our computer simulations have revealed various types of relaxation processes including the excitation of a random distribution of magnetic moments and the formation of stationary and moving domain walls. The region of optimal parameters for suppression of rapid spin relaxation is discussed.Comment: 15 pages uncluding 23 figure

    Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy

    Get PDF
    A requirement for many quantum computation schemes is the ability to measure single spins. This paper examines one proposed scheme: magnetic resonance force microscopy, including the effects of thermal noise and back-action from monitoring. We derive a simplified equation using the adiabatic approximation, and produce a stochastic pure state unraveling which is useful for numerical simulations.Comment: 33 pages LaTeX, 9 figure files in EPS format. Submitted to Physical Review

    Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals

    Full text link
    The equations for the three-dimensional incompressible flow of liquid crystals are considered in a smooth bounded domain. The existence and uniqueness of the global strong solution with small initial data are established. It is also proved that when the strong solution exists, all the global weak solutions constructed in [16] must be equal to the unique strong solution

    Heat conduction in 1D lattices with on-site potential

    Full text link
    The process of heat conduction in one-dimensional lattice with on-site potential is studied by means of numerical simulation. Using discrete Frenkel-Kontorova, ϕ\phi--4 and sinh-Gordon we demonstrate that contrary to previously expressed opinions the sole anharmonicity of the on-site potential is insufficient to ensure the normal heat conductivity in these systems. The character of the heat conduction is determined by the spectrum of nonlinear excitations peculiar for every given model and therefore depends on the concrete potential shape and temperature of the lattice. The reason is that the peculiarities of the nonlinear excitations and their interactions prescribe the energy scattering mechanism in each model. For models sin-Gordon and ϕ\phi--4 phonons are scattered at thermalized lattice of topological solitons; for sinh-Gordon and ϕ\phi--4 - models the phonons are scattered at localized high-frequency breathers (in the case of ϕ\phi--4 the scattering mechanism switches with the growth of the temperature).Comment: 26 pages, 18 figure

    Reionization: Characteristic Scales, Topology and Observability

    Full text link
    Recently the numerical simulations of the process of reionization of the universe at z>6 have made a qualitative leap forward, reaching sufficient sizes and dynamic range to determine the characteristic scales of this process. This allowed making the first realistic predictions for a variety of observational signatures. We discuss recent results from large-scale radiative transfer and structure formation simulations on the observability of high-redshift Ly-alpha sources. We also briefly discuss the dependence of the characteristic scales and topology of the ionized and neutral patches on the reionization parameters.Comment: 4 pages, 5 figures (4 in color), to appear in Astronomy and Space Science special issue "Space Astronomy: The UV window to the Universe", proceedings of 1st NUVA Conference ``Space Astronomy: The UV window to the Universe'' in El Escorial (Spain
    corecore