121 research outputs found

    Control of Streptomyces alfalfae XY25T Over Clubroot Disease and Its Effect on Rhizosphere Microbial Community in Chinese Cabbage Field Trials

    Get PDF
    Clubroot caused by Plasmodiophora brassicae is one of the most destructive diseases in cruciferous crops. Streptomyces alfalfae XY25T, a biological control agent, exhibited great ability to relieve clubroot disease, regulate rhizosphere bacterial and fungal communities in Chinese cabbage, and promote its growth in greenhouse. Therefore, field experiments were carried out to investigate the effects of S. alfalfae XY25T on clubroot and rhizosphere microbial community in Chinese cabbage. Results showed that the control efficiency of clubroot by S. alfalfae XY25T was 69.4%. Applying the agent can alleviate soil acidification; increase the contents of soil organic matter, available nitrogen, available phosphorus, and available potassium; and enhance activities of invertase, urease, catalase, and alkaline phosphatase. During Chinese cabbage growth, bacterial diversity decreased first and then increased, and fungal diversity decreased gradually after inoculation with S. alfalfae XY25T. High-throughput sequencing analysis showed that the main bacterial phyla were Proteobacteria, Bacteroidetes, Acidobacteria, and Planctomycetes, and the major fungal phyla were Ascomycota and Basidiomycota in rhizosphere soil. The dominant bacterial genera were Flavobacterium, Candidatus, Pseudomonas, Stenotrophomonas, Sphingomonas, Flavisolibacter, and Gemmatimonbacteria with no significant difference in abundance, and the major fungal genera were Monographella, Aspergillus, Hypocreales, Chytridiaceae, Fusarium, Pleosporales, Agaricales, Mortierella, and Pleosporales. The significant differences were observed among Pleosporales, Basidiomycota, Colletotrichum, two strains attributed to Agaricales, and another two unidentified fungi by using S. alfalfae XY25T. Moreover, quantitative real-time PCR results indicated that P. brassicae content was significantly decreased after the agent inoculation. In conclusion, S. alfalfae XY25T can affect rhizosphere microbial communities; therefore, applying the agent is an effective approach to reduce the damage caused by clubroot

    Green synthesis of biogenetic Te(0) nanoparticles by high tellurite tolerance fungus Mortierella sp. AB1 with antibacterial activity

    Get PDF
    Tellurite [Te(IV)] is a high-toxicity metalloid. In this study, a fungus with high Te(IV) resistance was isolated. Strain AB1 could efficiently reduce highly toxic Te(IV) to less toxic Te(0). The reduced products formed rod-shaped biogenetic Te(0) nanoparticles (Bio-TeNPs) intracellularly. Further TEM-element mapping, FTIR, and XPS analysis showed that the extracted Bio-TeNPs ranged from 100 to 500 nm and consisted of Te(0), proteins, lipids, aromatic compounds, and carbohydrates. Moreover, Bio-TeNPs exhibited excellent antibacterial ability against Shigella dysenteriae, Escherichia coli, Enterobacter sakazakii, and Salmonella typhimurium according to inhibition zone tests. Further growth and live/dead staining experiments showed that E. coli and S. typhimurium were significantly inhibited by Bio-TeNPs, and cells were broken or shriveled after treatment with Bio-TeNPs based on SEM observation. Additionally, the antioxidant and cytotoxicity tests showed that the Bio-TeNPs exhibited excellent antioxidant capacity with no cytotoxicity. All these results suggested that strain AB1 showed great potential in bioremediation and Bio-TeNPs were excellent antibacterial nanomaterials with no cytotoxicity.Peer reviewe

    Raw rehmannia radix polysaccharide can effectively release peroxidative injury induced by duck hepatitis A virus

    Get PDF
    Background: Duck viral hepatitis (DVH), caused by duck hepatitis A virus (DHAV), is a fatal contagious infectious disease which spreads rapidly with high morbidity and high mortality, and there is no effective clinical drug against DVH.Materials and Methods: Raw Rehmannia Radix Polysaccharide (RRRP), Lycii Fructus polysaccharides and Astragalus Radix polysaccharides were experimented in vitro and in vivo. Mortality rate, livers change, liver lesion scoring, peroxidative injury evaluation indexes in vitro and in vivo, and hepatic injury evaluation indexes of optimal one were detected and observed in this experiment.Results: RRRP could reduce mortality with the protection rate about 20.0% compared with that of the viral control (VC) group, finding that RRRP was the most effective against DHAV. The average liver scoring of the VC, blank control (BC), RRRP groups were 3.5, 0, 2.1. Significant difference (P<0.05) appeared between any two groups, demonstrating that it can alleviate liver pathological change. RRRP could make the hepatic injury evaluation indexes similar to BC group while the levels of the VC group were higher than other two groups in general. The levels of SOD, GSH-Px, CAT of RRRP group showed significant higher than that of VC group while the levels of NOS and MDA showed the opposite tendency, thus, RRRP could release peroxidative injury.Conclusion: RRRP was the most effective against duck hepatitis A virus (DHAV). RRRP could reduce mortality, alleviate liver pathological change, down-regulate liver lesion score, release peroxidative injury and hepatic injury. The antiviral and peroxidative injury releasing activity of RRRP for DHAV provided a platform to test novel drug strategies for hepatitis A virus in human beings.Keywords: Raw Rehmannia Radix Polysaccharide; duck hepatitis A virus; peroxidative injury; hepatic injur

    Effects of Kevlar® 29 yarn twist on tensile and tribological properties of self-lubricating fabric liner

    Get PDF
    Yarn twist in textile technology is an important characteristic since it considerably affects the properties of knitted or woven fabrics. Many researchers have investigated the effect of staple-spun yarn twist on the properties of the yarns and fabrics. However, the effects of twist level of Kevlar® 29 filament yarn on the properties of yarn and its resin-impregnated self-lubricating fabric liner are not fully known yet. In this study, we have investigated the effects of Kevlar® 29 twist level on the tensile and tribological properties of the fabric liner (Kevlar® 29/polytetrafluoroethylene fabric-resin composite). Two unexpected findings about the effect of yarn twist have been observed, namely (1) asynchronous twist effect on the yarn’s and the liner’s tensile strength and (2) dissimilar yarn twist effect on the liner’s performance. These findings are mainly attributed to the synergic contributions of the yarn twist and strength and the interaction of the resin with the yarn orientation in the woven fabric structure of the liner

    RAW REHMANNIA RADIX POLYSACCHARIDE CAN EFFECTIVELY RELEASE PEROXIDATIVE INJURY INDUCED BY DUCK HEPATITIS A VIRUS

    Get PDF
    Background: Duck viral hepatitis (DVH), caused by duck hepatitis A virus (DHAV), is a fatal contagious infectious disease which spreads rapidly with high morbidity and high mortality, and there is no effective clinical drug against DVH. Materials and Methods: Raw Rehmannia Radix Polysaccharide (RRRP), Lycii Fructus polysaccharides and Astragalus Radix polysaccharides were experimented in vitro and in vivo. Mortality rate, livers change, liver lesion scoring, peroxidative injury evaluation indexes in vitro and in vivo, and hepatic injury evaluation indexes of optimal one were detected and observed in this experiment. Results: RRRP could reduce mortality with the protection rate about 20.0% compared with that of the viral control (VC) group, finding that RRRP was the most effective against DHAV. The average liver scoring of the VC, blank control (BC), RRRP groups were 3.5, 0, 2.1. Significant difference (

    Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways

    Get PDF
    The duck virus hepatitis (DVH) caused by the duck hepatitis virus A (DHAV) has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA) and its phosphorylated derivative (pICA) possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo, and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo, the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2) as an intervention method in vitro. pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs) viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2) and c-Jun N-terminal kinase (JNK), which were related to mitogen-activated protein kinases (MAPKs) signaling pathways. Ultimately, compared to ICA, pICA exhibited more antioxidant activity that could regulate oxidative stress-related indicators, and inhibited the phosphorylation of MAPKs signaling pathway

    Selenylation Modification of Atractylodes macrocephala Polysaccharide and Evaluation of Antioxidant Activity

    No full text
    The Atractylodes macrocephala polysaccharide (AMP) was extracted by water extracting-alcohol precipitating method and further purified by DEAE column. After that, the polysaccharides were modified by nitric acid-sodium selenite method, and nine kinds of selenizing AMPs (sAMPs) were obtained, namely, from sAMP1 to sAMP9. AMP and sAMP were characterized using FTIR spectrometry. Then their antioxidant activities in vitro were measured by free radical-scavenging test. Among these, sAMP6 presented the strongest antioxidant effect. For the test in vivo, the chickens at day 14 vaccinated with ND vaccine were repeatedly vaccinated at day 28. The chickens in sAMP and AMP were injected respectively with 1 mg of sAMP6 and AMP and, in vaccination control (VC) and BC groups, injected with equal volume of normal saline. Respectively, after the first vaccine, on days 7, 14, 21, and 28, the serum GSH-Px and SOD activities and MDA content were determined. The results suggested that sAMP6 could significantly promote GSH-Px and SOD activities and decrease MDA content. All these results indicated that selenylation modification could significantly enhance the antioxidant activity of AMP

    The Immunological Enhancement Activity of Propolis Flavonoids Liposome In Vitro and In Vivo

    No full text
    The aim of this study was to investigate and assess the effects of propolis flavonoids liposome imposed on the immune system by comparing it to propolis flavonoids and blank liposome. In vitro, the effects of the above drugs on macrophages were assessed by measuring the phagocytic function and cytokine production. In vivo, the immunological adjuvant activity of propolis flavonoids liposome was compared with those of propolis flavonoids and blank liposome. The results showed that in vitro propolis flavonoids liposome can significantly enhance the phagocytic function of macrophages and the release of IL-1β, IL-6, and IFN-γ. In addition, subcutaneous administration of propolis flavonoids liposome with ovalbumin to mice could effectively activate the cellular and humoral immune response, including inducing higher level concentrations of IgG, IL-4, and IFN-γ in serum and the proliferation rates of splenic lymphocytes. These findings provided valuable information regarding the immune modulatory function of propolis flavonoids liposome and indicated the possibility of use of propolis flavonoids liposome as a potential adjuvant
    • …
    corecore