9 research outputs found

    CaSiO3 microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres

    Get PDF
    Poly (lactide-co-glycolide) (PLGA) microspheres have been used for regenerative medicine due to their ability for drug delivery and generally good biocompatibility, but they lack adequate bioactivity for bone repair application. CaSiO3 (CS) has been proposed as a new class of material suitable for bone tissue repair due to its excellent bioactivity. In this study, we set out to incorporate CS into PLGA microspheres to investigate how the phase structure (amorphous and crystal) of CS influences the in vitro and in vivo bioactivity of the composite microspheres, with a view to the application for bone regeneration. X-ray diffraction (XRD), N2 adsorption-desorption analysis and scanning electron microscopy (SEM) were used to analyze the phase structure, surface area/pore volume, and microstructure of amorphous CS (aCS) and crystal CS (cCS), as well as their composite microspheres. The in vitro bioactivity of aCS and cCS – PLGA microspheres was evaluated by investigating their apatite-mineralization ability in simulated body fluids (SBF) and the viability of human bone mesenchymal stem cells (BMSCs). The in vivo bioactivity was investigated by measuring their de novo bone-formation ability. The results showed that the incorporation of both aCS and cCS enhanced the in vitro and in vivo bioactivity of PLGA microspheres. cCS/PLGA microspheres improved better in vitro BMSC viability and de novo bone-formation ability in vivo, compared to aCS/PLGA microspheres. Our study indicates that controlling the phase structure of CS is a promising method to modulate the bioactivity of polymer microsphere system for potential bone tissue regeneration

    Neural and behavioral evidence supporting the relationship between habitual exercise and working memory precision in healthy young adults

    Get PDF
    IntroductionWorking memory (WM) is a well-known fundamental ability related to various high-level cognitive functions, such as executive functioning, decision-making, and problem-solving. Although previous studies have posited that chronic exercise may improve cognitive functions, its underlying neural mechanisms and whether habitual exercise is associated with individual WM ability remain unclear.MethodsIn the current study, 36 participants reported their habitual physical activity through the International Physical Activity Questionnaire (IPAQ). In addition to assessments of intelligence quotient (IQ), WM storage capacity (K score), and visuomotor coordination capacity, electroencephalogram (EEG) signals were recorded while the participants performed a WM precision task fusing conventional visual and motor retrospective cue (retro-cue) WM tasks.ResultsWe found that greater amounts of and higher frequencies of vigorous-intensity exercise were highly correlated with smaller recall errors in the WM precision task. Contralateral delay activity (CDA), a well-known WM-related event-related potential (ERP) component evoked by the valid retro-cue, predicted individual behavioral recall error. Participants who met the medium or high level of IPAQ criteria (the regular exercise group) showed smaller behavioral recall error and larger CDA than participants who did not meet the criteria (the irregular exercise group). The two groups did not differ in other assessments, such as IQ, WM storage capacity, and visuomotor coordination ability.DiscussionHabitual exercise was specifically correlated with individual differences in WM precision, rather than IQ, WM storage capacity, and visuomotor coordination ability, suggesting potential mechanisms of how modulations of chronic exercise improve cognition through visual and/or motor WM precision

    Strain variation in ppGpp concentration and RpoS levels in laboratory strains of Escherichia coli K-12

    No full text
    Laboratory strains and natural isolates of Escherichia coli differ in their level of stress resistance due to strain variation in the level of the sigma factor sigma(S) (or RpoS), the transcriptional master controller of the general stress response. We found that the high level of RpoS in one laboratory strain (MC4100) was partially dependent on an elevated basal level of ppGpp, an alarmone responding to stress and starvation. The elevated ppGpp was caused by two mutations in spoT, a gene associated with ppGpp synthesis and degradation. The nature of the spoT allele influenced the level of ppGpp in both MC4100 and another commonly used K-12 strain, MG1655. Introduction of the spoT mutation into MG1655 also resulted in an increased level of RpoS, but the amount of RpoS was lower in MG1655 than in MC4100 with either the wild-type or mutant spoT allele. In both MC4100 and MG1655, high ppGpp concentration increased RpoS levels, which in turn reduced growth with poor carbon sources like acetate. The growth inhibition resulting from elevated ppGpp was relieved by rpoS mutations. The extent of the growth inhibition by ppGpp, as well as the magnitude of the relief by rpoS mutations, differed between MG1655 and MC4100. These results together suggest that spoT mutations represent one of several polymorphisms influencing the strain variation of RpoS levels. Stress resistance was higher in strains with the spoT mutation, which is consistent with the conclusion that microevolution affecting either or both ppGpp and RpoS can reset the balance between self-protection and nutritional capability, the SPANC balance, in individual strains of E coli.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP-Brazil)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Australian Endeavour ResearchAustralian Endeavour ResearchAustralian Research CouncilAustralian Research Council (ARC

    A Ubiquitous but Overlooked Side Reaction in Dimethyl Labeling of Peptides

    No full text
    10.1021/acs.analchem.8b03570Analytical Chemistry902213533-1354

    Enhancement of the Conductivity and Uniformity of Silver Nanowire Flexible Transparent Conductive Films by Femtosecond Laser-Induced Nanowelding

    No full text
    In order to improve the performance of silver nanowire (AgNW) flexible transparent conductive films (FTCFs), including the conductivity, uniformity, and reliability, the welding of high repetition rate femtosecond (fs) laser is applied in this work. Fs laser irradiation can produce local enhancement of electric field, which induce melting at the gap of the AgNWs and enhance electrical conductivity of nanowire networks. The overall resistivity of the laser-welded AgNW FTCFs reduced significantly and the transparency changed slightly. Meanwhile, PET substrates were not damaged during the laser welding procedure in particular parameters. The AgNW FTCFs can achieve a nonuniformity factor of the sheet resistance as 4.6% at an average sheet resistance of 16.1 Ω/sq and transmittance of 91%. The laser-welded AgNW FTCFs also exhibited excellent reliability against mechanical bending over 10,000 cycles. The welding process may open up a new approach for improvement of FTCFs photoelectric property and can be applied in the fabrication of silver nanostructures for flexible optoelectronic and integration of functional devices

    Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (<i>Brassica oleracea</i> var. <i>alboglabra</i>)

    No full text
    Trisomy harbouring an extra copy of the chromosome generally causes a variety of physical and intellectual disabilities in mammals but is an extremely rare and important genetic stock in plants. In this study, a spontaneous trisomy plant in a Chinese kale accession (Brassica oleracea var. alboglabra, CC, 2n = 18) that showed significantly smaller plant architecture when compared to other normal plants was found and subsequently confirmed by cytological analysis in which the chromosome set of 2n = 19 and abnormal chromosome behaviour were observed. Then, based on the gene expression deviation determined by RNA-seq, the extra chromosome copy in this trisomy was identified as chromosome C2 (TC2). Compared to normal plants, TC2 not only showed generally upregulated differentially expressed genes (DEGs) on chromosome C2 (97.21% of 573 DEGs in chromosome C2) but also exhibited a whole-genome expression perturbation, in which 1329 DEGs (69.87% of total DEGs) were observed along two-copy chromosomes (trans-effect). The genes in the high (gene expression value > 100) and medium (100 > gene expression value > 10) groups were more prone to decreased gene expression, but the genes in the low group (10 > gene expression value > 0.1) showed upregulated expression deviation. In addition, GO (Gene ontology) annotation analysis revealed that the upregulated DEGs in the trans-effect group were overrepresented by the genes involved in the response to stress category, while the downregulated DEGs in the trans-effect group were mostly enriched in pathways related to DNA synthesis. In conclusion, we think our results can provide important resources for genetic analysis in B. oleracea and show some novel insights for understanding trisomy plant biology

    Improving Mitochondrial Function in Skeletal Muscle Contributes to the Amelioration of Insulin Resistance by Nicotinamide Riboside

    No full text
    High-fat diet (HFD)-induced insulin resistance (IR) in skeletal muscle is often accompanied by mitochondrial dysfunction and oxidative stress. Boosting nicotinamide adenine dinucleotide (NAD) using nicotinamide riboside (NR) can effectively decrease oxidative stress and increase mitochondrial function. However, whether NR can ameliorate IR in skeletal muscle is still inconclusive. We fed male C57BL/6J mice with an HFD (60% fat) ± 400 mg/kg·bw NR for 24 weeks. C2C12 myotube cells were treated with 0.25 mM palmitic acid (PA) ± 0.5 mM NR for 24 h. Indicators for IR and mitochondrial dysfunction were analyzed. NR treatment alleviated IR in HFD-fed mice with regard to improved glucose tolerance and a remarkable decrease in the levels of fasting blood glucose, fasting insulin and HOMA-IR index. NR-treated HFD-fed mice also showed improved metabolic status regarding a significant reduction in body weight and lipid contents in serum and the liver. NR activated AMPK in the skeletal muscle of HFD-fed mice and PA-treated C2C12 myotube cells and upregulated the expression of mitochondria-related transcriptional factors and coactivators, thereby improving mitochondrial function and alleviating oxidative stress. Upon inhibiting AMPK using Compound C, NR lost its ability in enhancing mitochondrial function and protection against IR induced by PA. In summary, improving mitochondrial function through the activation of AMPK pathway in skeletal muscle may play an important role in the amelioration of IR using NR
    corecore