1,507 research outputs found

    The effect of machine and material parameters on rare earth roller separation

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009."June 2009." Cataloged from PDF version of thesis.Includes bibliographical references (p. 40-41).This study addresses the affect of machine and material factors on the separation of PET plastic and aluminum on the Rare Earth Roller magnetic separator. The purposes of this study are to gain a better understanding of how separation efficiencies are influenced and develop a performance profile of the Rare Earth Roller to generalize the behavior of other separators used in the recycling industry. Several operating parameters were explored, including input material concentration, splitter position and feed rate. Experimental design for the tests is presented. Separation performance appears to be dependent on splitter position, a subjective parameter determined by the characteristics of the machine. The separation process was less sensitive to material concentration and feed rate which are specifiable. The results from this study suggest that the Rare Earth Roller can operate at larger volumes of variable concentrations of aluminum and maintain industry standard separation efficiencies.by Esther Hu.S.B

    Correlation studies of open and closed states fluctuations in an ion channel: Analysis of ion current through a large conductance locust potassium channel

    Full text link
    Ion current fluctuations occurring within open and closed states of large conductance locust potassium channel (BK channel) were investigated for the existence of correlation. Both time series, extracted from the ion current signal, were studied by the autocorrelation function (AFA) and the detrended fluctuation analysis (DFA) methods. The persistent character of the short- and middle-range correlations of time series is shown by the slow decay of the autocorrelation function. The DFA exponent α\alpha is significantly larger than 0.5. The existence of strongly-persistent long-range correlations was detected only for closed-states fluctuations, with α=0.98±0.02\alpha=0.98\pm0.02. The long-range correlation of the BK channel action is therefore determined by the character of closed states. The main outcome of this study is that the memory effect is present not only between successive conducting states of the channel but also independently within the open and closed states themselves. As the ion current fluctuations give information about the dynamics of the channel protein, our results point to the correlated character of the protein movement regardless whether the channel is in its open or closed state.Comment: 12 pages, 5 figures; to be published in Phys. Rev.

    Coherent X-ray Scattering from Manganite Charge and Orbital Domains

    Full text link
    We report coherent x-ray scattering studies of charge and orbital domains in manganite systems. The experiments were carried out on LaMnO_3 and Pr_{0.6}Ca_{0.4}MnO_3, with the incident photon energy tuned near the Mn K edge. At room temperature, the orbital speckle pattern of LaMnO_3 was observed to be constant over a timescale of at least minutes, which is indicative of static orbital domains on this timescale. For Pr_{0.6}Ca_{0.4}MnO_3, both charge and orbital speckle patterns were observed. The observation of the latter rules out the presence of fast orbital fluctuations, while long time series data-- on the order of several minutes-- were suggestive of slow dynamic behavior. In contrast, the charge order speckle patterns were static.Comment: 6 pages, 4 figure

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    Disappearing Dark Matter in Brane World Cosmology: New Limits on Noncompact Extra Dimensions

    Full text link
    We explore cosmological implications of dark matter as massive particles trapped on a brane embedded in a Randall-Sundrum noncompact higher dimension AdS5AdS_5 space. It is an unavoidable consequence of this cosmology that massive particles are metastable and can disappear into the bulk dimension. Here, we show that a massive dark matter particle (e.g. the lightest supersymmetric particle) is likely to have the shortest lifetime for disappearing into the bulk. We examine cosmological constraints on this new paradigm and show that disappearing dark matter is consistent (at the 95% confidence level) with all cosmological constraints, i.e. present observations of Type Ia supernovae at the highest redshift, trends in the mass-to-light ratios of galaxy clusters with redshift, the fraction of X-ray emitting gas in rich clusters, and the spectrum of power fluctuations in the cosmic microwave background. A best 2σ2 \sigma concordance region is identified corresponding to a mean lifetime for dark matter disappearance of 15Γ18015 \le \Gamma^{-1} \le 80 Gyr. The implication of these results for brane-world physics is discussed.Comment: 7 pages, 7 figures, new cosmological constraints added, accepted for publication in PR

    Multipartite entangled states in coupled quantum dots and cavity-QED

    Get PDF
    We investigate the generation of multipartite entangled state in a system of N quantum dots embedded in a microcavity and examine the emergence of genuine multipartite entanglement by three different characterizations of entanglement. At certain times of dynamical evolution one can generate multipartite entangled coherent exciton states or multiqubit WW states by initially preparing the cavity field in a superposition of coherent states or the Fock state with one photon, respectively. Finally we study environmental effects on multipartite entanglement generation and find that the decay rate for the entanglement is proportional to the number of excitons.Comment: 9 pages, 4 figures, to appear in Phys. Rev.

    Dynamic Evolution Model of Isothermal Voids and Shocks

    Full text link
    We explore self-similar hydrodynamic evolution of central voids embedded in an isothermal gas of spherical symmetry under the self-gravity. More specifically, we study voids expanding at constant radial speeds in an isothermal gas and construct all types of possible void solutions without or with shocks in surrounding envelopes. We examine properties of void boundaries and outer envelopes. Voids without shocks are all bounded by overdense shells and either inflows or outflows in the outer envelope may occur. These solutions, referred to as type X\mathcal{X} void solutions, are further divided into subtypes XI\mathcal{X}_{\rm I} and XII\mathcal{X}_{\rm II} according to their characteristic behaviours across the sonic critical line (SCL). Void solutions with shocks in envelopes are referred to as type Z\mathcal{Z} voids and can have both dense and quasi-smooth edges. Asymptotically, outflows, breezes, inflows, accretions and static outer envelopes may all surround such type Z\mathcal{Z} voids. Both cases of constant and varying temperatures across isothermal shock fronts are analyzed; they are referred to as types ZI\mathcal{Z}_{\rm I} and ZII\mathcal{Z}_{\rm II} void shock solutions. We apply the `phase net matching procedure' to construct various self-similar void solutions. We also present analysis on void generation mechanisms and describe several astrophysical applications. By including self-gravity, gas pressure and shocks, our isothermal self-similar void (ISSV) model is adaptable to various astrophysical systems such as planetary nebulae, hot bubbles and superbubbles in the interstellar medium as well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS

    Schwinger boson theory of anisotropic ferromagnetic ultrathin films

    Full text link
    Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results obtained by Schwinger boson mean-field theory are compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as publishe

    State transfer in intrinsic decoherence spin channels

    Full text link
    By analytically solving the master equation, we investigate quantum state transfer, creation and distribution of entanglement in the model of Milburn's intrinsic decoherence. Our results reveal that the ideal spin channels will be destroyed by the intrinsic decoherence environment, and the detrimental effects become severe as the decoherence rate γ\gamma and the spin chain length NN increase. For infinite evolution time, both the state transfer fidelity and the concurrence of the created and distributed entanglement approach steady state values, which are independent of the decoherence rate γ\gamma and decrease as the spin chain length NN increases. Finally, we present two modified spin chains which may serve as near perfect spin channels for long distance state transfer even in the presence of intrinsic decoherence environments F[ρ(t)]\mathcal {F}{[\rho(t)]}.Comment: 11 pages, 11 figure
    corecore