217 research outputs found
Third Order Nonlinearity Of Organic Molecules
The main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (χ (3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities. Both linear (absorption, fluorescence, fluorescence excitation anisotropy) and nonlinear (Z-scan, two-photon fluorescence, pump-probe) techniques are described and utilized to fully characterize the spectroscopic properties of organic molecules in solution or solid-state form. These properties are then analyzed by quantum chemical calculations or other specific quantum mechanical model to understand the origins of the nonlinearities as well as the correlations with their unique molecular structural features. These calculations are performed by collaborators. The 2PA study of organic materials is focused on the structure-2PA property relationships of four groups of dyes with specific molecular design approaches as the following: (1) Acceptor-π-Acceptor dyes for large 2PA cross section, (2) Donor-π-Acceptor dyes for strong solvatochromic effects upon the 2PA spectra, (3) Near-infrared polymethine dyes for a symmetry breaking effect, (4) Sulfur-squaraines vs. oxygen-squaraines to study the role of sulfur atom replacement upon their 2PA spectra. Additionally, the 2PA spectrum of a solid-state single crystal made from a Donor-π-Acceptor dye is measured, and the anisotropic nonlinearity is studied with respect to different incident polarizations. These studies further advance our iv understanding towards an ultimate goal to a predictive capability for the 2PA properties of organic molecules. The NLR study on molecules is focused on the temporal and spectral dispersion of the nonlinear refraction index, n2, of the molecules. Complicated physical mechanisms, originating from either electronic transitions or nuclei movement, are introduced in general. By adopting a prism compressor / stretcher to control the pulsewidth, an evolution of n2 with respect to incident pulsewidth is measured on a simple inorganic molecule –carbon disulfide (CS2) in neat liquid at 700 nm and 1064 nm to demonstrate the pulsewidth dependent nonlinear refraction. The n2 spectra of CS2 and certain organic molecules are measured by femtosecond pulses, which are then analyzed by a 3-level model, a simplified Sum-over-states quantum mechanical model. These studies can serve as a precursor for future NLR investigations
Molecular typing and evolution of Salmonella enterica serovar Typhimurium
Salmonella enterica serovar Typhimurium is a common cause of salmonellosis among humans and animals worldwide. In Australia, Typhimurium is responsible for over half of the salmonellosis cases. The Anderson phage-typing scheme is the primary means of long-term surveillance of Typhimurium outbreak isolates, and has played an important role in epidemiology. However, there exist quite a number of strains of Typhimurium that cannot be defined by the phage-typing scheme. Furthermore, the knowledge of evolutionary relationships among isolates of different phage types is still very limited and the genetic basis of phage type variation remains largely unknown. To address these issues, this study focused on molecular typing and evolution of Typhimurium. Fluorescent amplified-fragment length polymorphism (AFLP) was applied to 46 Typhimurium isolates comprising nine phage types in Australia using the restriction enzymes MseI and EcoRI and MseI +1 / EcoRI +1 primer pair combinations. The selected phage types, DT9, DT135, DT64, DT44, DT126, DT12a, DT1, DT141 and DT108, have been dominant or frequent phage types in animal and human infections in Australia in recent years. AFLP in the present study showed a very good discrimination power with Simpson index of diversity of 0.98, 35 different AFLP patterns were observed in the 46 isolates studied. The tree based on AFLP patterns showed good correlation with phage type, grouped most Typhimurium isolates by phage type, and differentiated all nine phage types. Furthermore, 84 phage-type specific polymorphic AFLP fragments, for which presence or absence correlated with phage type (including 25 with one exception to phage-type specificity) were observed in the 46 strains studied. Eighteen phage-type specific AFLP fragments were cloned and sequenced. Sixteen are of known genes or have a homologue in the databases. It was found a predominance of phage and plasmid genes rather than mutational changes in the AFLP fragments studied. Of the 18 cloned and sequenced AFLP fragments, only four relate to mutational changes in the S. enterica chromosome, the other 14 comprise DNA of mobile elements: nine are phage related, three are plasmid related and two are gain of DNA from unknown origin. Twelve of the 18 sequenced phage-type specific AFLP markers are polymorphic because the DNA is present or absent as indicated by Southern hybridization. Two of these markers were successfully used in preliminary PCR-based typing of 30 DT9 and 29 DT135 isolates from worldwide collections. 27 of the 30 DT9 isolates and all DT135 isolates tested were correctly categorized. The results implied a good potential to use the sequence of these fragments as the basis for a multiplex PCR or a microarray based molecular 'phage' typing method for Typhimurium. This thesis also studied the molecular evolutionary relationships among the same set of 46 Typhimurium isolates using mutational changes detected by AFLP, or analysis of intergenic regions and their flanking genes in genome sequences. The complete genome sequence of Typhimurium LT2 was analysed by computer modelled AFLP. The polymorphic AFLP fragments, which matched with the modelled LT2 AFLP fragments, were amplified and sequenced by LT2 genome based primers to determine the changes. Forty-nine intergenic regions with higher pairwise differences between LT2 and Typhi CT18 were amplified and sequenced using LT2 genome based primers for one isolate of each phage type. 51 polymorphic sites were detected consisting of 18 in AFLP fragments and 33 in intergenic regions or their flanking genes. PCR-RFLP (restriction fragment length polymorphism) and SNaPshot were used to further investigate the distribution of the single nucleotide polymorphisms (SNPs) detected in intergenic regions in all isolates studied. Of the 18 mutational changes detected in AFLP fragments, eight were indels (insertions / deletions) and ten single base substitutions. Of the eight indels, four were in genes, three in intergenic regions, and one covered adjacent intergenic and coding regions. The four indels in genes all caused frameshift mutations, including three single base indels and one 19 bp deletion. Of the ten substitutions, one was in an intergenic region and nine in genes comprising three synonymous and six non-synonymous substitutions. Of the 33 polymorphic sites detected from sequences of 23 intergenic regions and their flanking genes, one was IS200 insertion and 32 single nucleotide polymorphisms (SNPs), of which 30 were single base substitutions and two were single base indels. Nine of the 33 variations were found in the flanking genes, which were all single base substitutions comprising four synonymous, four non-synonymous substitutions and one non-sense mutation. More non-synonymous than synonymous substitutions were found for those in coding regions within Typhimurium, indicating that slightly deleterious intraspecies mutations can be fixed within clones, such as various lineages of Typhimurium. The 51 polymorphic sites, which were inferred from sequences of both mutation related AFLP fragments, and intergenic regions and their flanking genes, gave a single phylogenetic tree of the 46 Typhimurium isolates studied. All sequences involved were compared with the homologous sequences in the available S. enterica genome sequences for serovars Typhi, Paratyphi A, Gallinarum, Enteritidis and Pullorum and this enabled the determination of the direction of the mutational changes in the isolates studied and the root of the phylogenetic tree. There were only two events inferred to have occurred twice, the remaining 49 polymorphisms can be explained by a single event. The data indicated that Typhimurium has a very strong clonal structure with a very low level of recombination over the time for diversification of Typhimurium as majority of clonal variations are from point mutations rather than recombination. The phylogenetic tree based on mutational changes showed that most Typhimurium isolates of a given phage type are in the same evolutionary group, but that some phage types appear to have arisen more than once. Comparison of the phylogenetic tree with AFLP data gave examples of unrelated isolates of a given phage type having common AFLP fragments comprising plasmid or phage genes, supporting the view that phage type can be determined by presence of specific phages or plasmids. The mutation-based tree showed that six of the nine phage types studied appeared to have a single origin, at least for the isolates studied. It also found that DT1 and DT44 had two independent origins even for the limited set of strains used. The distribution of DT12a isolates into two groups could be explained that the group of three DT12a isolates were derived from the other group of four DT12a isolates, where the root of the tree might be. The data also confirmed that DT64 arose from DT9. The phylogenetic tree that was generated based on essentially mutational changes provides clear relationships of the closely related Typhimurium isolates with high level of consistency and reasonable confidence. This study provided one of the few analyses of relationships of isolates within a clone. Matching actual AFLP with computer modeled AFLP and sequencing intergenic regions provide very good new strategies to identify mutational polymorphisms and to study the molecular evolutionary relationships in the closely related isolates
Metatranscriptomic analysis reveals active bacterial communities in diabetic foot infections
Despite the extended view of the composition of diabetic foot infections (DFIs), little is known about which transcriptionally active bacterial communities are pertinent to infection, and if any differences are associated with increased infection severity. We applied a RNA sequencing approach to analyze the composition, function, and pathogenicity of the active bacterial communities in DFIs. Taxonomic profiling of bacterial transcripts revealed the presence of 14 bacterial phyla in DFIs. The abundance of the Spiroplasma, Vibrio, and Mycoplasma were significantly different in different infection severities (P < 0.05). Mild and severe stages of infections were dominated by Staphylococcus aureus and Porphyromonas asaccharolytica, respectively. A total of 132 metabolic pathways were identified of which ribosome and thiamin being among the most highly transcribed pathways. Moreover, a total of 131 antibiotic resistance genes, primarily involved in the multidrug efflux pumps/exporters, were identified. Furthermore, iron acquisition systems (synthesize and regulation of siderophores) and pathways involved in the synthesis and regulation of cell-surface components associated with adhesion, colonization, and movement of bacterial cells were the most common virulence factors. These virulence factors may help bacteria compete for scares resources and survive the host wound proteases. Characterization of transcriptionally active bacterial communities can help to provide an understanding of the role of key pathogens in the development of DFIs. Such information can be clinically useful allowing replacement of DFIs empirical therapy with targeted treatment
A highly sensitive and specific system for large-scale gene expression profiling
<p>Abstract</p> <p>Background</p> <p>Rapid progress in the field of gene expression-based molecular network integration has generated strong demand on enhancing the sensitivity and data accuracy of experimental systems. To meet the need, a high-throughput gene profiling system of high specificity and sensitivity has been developed.</p> <p>Results</p> <p>By using specially designed primers, the new system amplifies sequences in neighboring exons separated by big introns so that mRNA sequences may be effectively discriminated from other highly related sequences including their genes, unprocessed transcripts, pseudogenes and pseudogene transcripts. Probes used for microarray detection consist of sequences in the two neighboring exons amplified by the primers. In conjunction with a newly developed high-throughput multiplex amplification system and highly simplified experimental procedures, the system can be used to analyze >1,000 mRNA species in a single assay. It may also be used for gene expression profiling of very few (<it>n </it>= 100) or single cells. Highly reproducible results were obtained from duplicate samples with the same number of cells, and from those with a small number (100) and a large number (10,000) of cells. The specificity of the system was demonstrated by comparing results from a breast cancer cell line, MCF-7, and an ovarian cancer cell line, NCI/ADR-RES, and by using genomic DNA as starting material.</p> <p>Conclusion</p> <p>Our approach may greatly facilitate the analysis of combinatorial expression of known genes in many important applications, especially when the amount of RNA is limited.</p
The microbiome of diabetic foot ulcers : a comparison of swab and tissue biopsy wound sampling techniques using 16S rRNA gene sequencing
Background: Health-care professionals need to collect wound samples to identify potential pathogens that contribute to wound infection. Obtaining appropriate samples from diabetic foot ulcers (DFUs) where there is a suspicion of infection is of high importance. Paired swabs and tissue biopsies were collected from DFUs and both sampling techniques were compared using 16S rRNA gene sequencing. Results: Mean bacterial abundance determined using quantitative polymerase chain reaction (qPCR) was significantly lower in tissue biopsies (p = 0.03). The mean number of reads across all samples was significantly higher in wound swabs X = 32,014) compared to tissue (X = 15,256, p = 0.001). Tissue biopsies exhibited greater overall diversity of bacteria relative to swabs (Shannon’s H diversity p = 0.009). However, based on a presence/ absence analysis of all paired samples, the frequency of occurrence of bacteria from genera of known and potential pathogens was generally higher in wound swabs than tissue biopsies. Multivariate analysis identified significantly different bacterial communities in swabs compared to tissue (p = 0.001). There was minimal correlation between paired wound swabs and tissue biopsies in the number and types of microorganisms. RELATE analysis revealed low concordance between paired DFU swab and tissue biopsy samples (Rho = 0.043, p = 0.34). Conclusions: Using 16S rRNA gene sequencing this study identifies the potential for using less invasive swabs to recover high relative abundances of known and potential pathogen genera from DFUs when compared to the gold standard collection method of tissue biopsy. SOME OF THE SCIENTIC SYMBOLS CAN NOT BE REPRESENTED CORRECTLY IN THE ABSTRACT. PLEASE READ WITH CAUTION AND REFER TO THE ORIGINAL PUBLICATION
Dual-arm Z-scan Technique to Extract Dilute Solute Nonlinearities from Solution Measurements
We present a technique in which small solute nonlinearities may be extracted from large solvent signals by performing simultaneous Z-scans on two samples (solvent and solution). By using a dual-arm Z-scan apparatus with identical arms, fitting error in determining the solute nonlinearity is reduced because the irradiance fluctuations are correlated for both the solvent and solution measurements. To verify the sensitivity of this technique, the dispersion of nonlinear refraction of a squaraine molecule is measured. Utilizing this technique allows for the effects of the solvent n2 to be effectively eliminated, thus overcoming a longstanding problem in nonlinear optical characterization of organic dyes
Reconstructed springtime (March–June) precipitation tracked by tree rings dating back to 1760 CE in the Qinling-Bashan mountainous area
In recent decades, considerable advances have been made in dendroclimatic reconstruction in the eastern monsoon region of China. However, understanding of long-term hydroclimatic changes has not been comprehensive due to the complexity of the regional geography in China's north-south transitional zone. Growth-climate response analysis indicated that springtime precipitation is the main factor limiting the radial growth of pine trees in the Qinling-Bashan mountainous area. Based on the three tree ring chronologies distributed in the southeast of Shaanxi Province, we developed a March–June precipitation reconstruction spanning 1760–2020 CE for the Qinling-Bashan mountainous area. Precipitation reconstruction accounts for 40.6% of the total precipitation variance during the instrumental period 1955–2016. Spatial correlation analysis indicated that the precipitation reconstruction recorded similar common precipitation signals for the eastern Qinling Mountains and the Yangtze-Huai River Basin. The results of the superposed epoch analysis (SEA) revealed that low precipitation was one of the main causes of severe drought and locust plague events. The preliminary synoptic climatology analysis showed that our reconstructed precipitation is closely linked to the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) variability.Fil: Wang, Shijie. Yunnan University; ChinaFil: Man, Wenmin. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Chen, Feng. Yunnan University; China. China Meteorological Administration; ChinaFil: Chen, Youping. Yunnan University; ChinaFil: Yu, Shulong. China Meteorological Administration; ChinaFil: Cao, Honghua. Yunnan University; ChinaFil: Hu, Mao. Yunnan University; ChinaFil: Hou, Tiyuan. Yunnan University; ChinaFil: Hadad, MartĂn Ariel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas FĂsicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales; Argentina. Universidad Mayor; Chil
Lipopolysaccharide (LPS) potentiates hydrogen peroxide toxicity in T98G astrocytoma cells by suppression of anti-oxidative and growth factor gene expression
<p>Abstract</p> <p>Background</p> <p>Lipopolysaccharide (LPS) is a cell wall component of Gram-negative bacteria with proved role in pathogenesis of sepsis. Brain injury was observed with both patients dead from sepsis and animal septic models. However, <it>in vitro </it>administration of LPS has not shown obvious cell damage to astrocytes and other relative cell lines while it does cause endothelial cell death <it>in vitro</it>. These observations make it difficult to understand the role of LPS in brain parenchymal injury.</p> <p>Results</p> <p>To test the hypothesis that LPS may cause biological changes in astrocytes and make the cells to become vulnerable to reactive oxygen species, a recently developed highly sensitive and highly specific system for large-scale gene expression profiling was used to examine the gene expression profile of a group of 1,135 selected genes in a cell line, T98G, a derivative of human glioblastoma of astrocytic origin. By pre-treating T98G cells with different dose of LPS, it was found that LPS treatment caused a broad alteration in gene expression profile, but did not cause obvious cell death. However, after short exposure to H<sub>2</sub>O<sub>2</sub>, cell death was dramatically increased in the LPS pretreated samples. Interestingly, cell death was highly correlated with down-regulated expression of antioxidant genes such as cytochrome b561, glutathione s-transferase a4 and protein kinase C-epsilon. On the other hand, expression of genes encoding growth factors was significantly suppressed. These changes indicate that LPS treatment may suppress the anti-oxidative machinery, decrease the viability of the T98G cells and make the cells more sensitive to H<sub>2</sub>O<sub>2 </sub>stress.</p> <p>Conclusion</p> <p>These results provide very meaningful clue for further exploring and understanding the mechanism underlying astrocyte injury in sepsis <it>in vivo</it>, and insight for why LPS could cause astrocyte injury <it>in vivo</it>, but not <it>in vitro</it>. It will also shed light on the therapeutic strategy of sepsis.</p
- …