5 research outputs found

    Stratification of responders towards eculizumab using a structural epitope mapping strategy

    Get PDF
    The complement component 5 (C5)-binding antibody eculizumab is used to treat patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical haemolytic uremic syndrome (aHUS). As recently reported there is a need for a precise classification of eculizumab responsive patients to allow for a safe and cost-effective treatment. To allow for such stratification, knowledge of the precise binding site of the drug on its target is crucial. Using a structural epitope mapping strategy based on bacterial surface display, flow cytometric sorting and validation via haemolytic activity testing, we identified six residues essential for binding of eculizumab to C5. This epitope co-localizes with the contact area recently identified by crystallography and includes positions in C5 mutated in non-responders. The identified epitope also includes residue W917, which is unique for human C5 and explains the observed lack of cross-reactivity for eculizumab with other primates. We could demonstrate that Ornithodorus moubata complement inhibitor (OmCI), in contrast to eculizumab, maintained anti-haemolytic function for mutations in any of the six epitope residues, thus representing a possible alternative treatment for patients non-responsive to eculizumab. The method for stratification of patients described here allows for precision medicine and should be applicable to several other diseases and therapeutics

    Combination of phage and Gram-positive bacterial display of human antibody repertoires enables isolation of functional high affinity binders

    Get PDF
    Surface display couples genotype with a surface exposed phenotype and thereby allows screening of gene-encoded protein libraries for desired characteristics. Of the various display systems available, phage display is by far the most popular, mainly thanks to its ability to harbour large size libraries. Here, we describe the first use of a Gram-positive bacterial host for display of a library of human antibody genes which, when combined with phage display, provides ease of use for screening, sorting and ranking by flow cytometry. We demonstrate the utility of this method by identifying low nanomolar affinity scFv fragments towards human epidermal growth factor receptor 2 (HER2). The ranking and performance of the scFv isolated by flow sorting in surface-immobilised form was retained when expressed as soluble scFv and analysed by biolayer interferometry, as well as after expression as full-length antibodies in mammalian cells. We also demonstrate the possibility of using Gram-positive bacterial display to directly improve the affinity of the identified binders via an affinity maturation step using random mutagenesis and flow sorting. This combined approach has the potential for a more complete scan of the antibody repertoire and for affinity maturation of human antibody formats

    Utilizing Solid Phase Cloning, Surface Display And Epitope Information for Antibody Generation and Characterization

    No full text
    Antibodies have become indispensable tools in diagnostics, research and as therapeutics. There are several strategies to generate monoclonal antibodies (mAbs) in order to avoid the drawbacks of polyclonal antibodies (pAbs) for therapeutic use. Moreover, the growing interest in precision medicine requires a well-characterized target and antibody to predict the responsiveness of a treatment. This thesis describes the use of epitope information and display technologies to generate and characterize antibodies. In Paper I, we evaluated if the epitope information of a well-characterized pAb could be used to generate mAbs with retained binding characteristics. In Paper II, the epitope on the complement protein C5 towards Eculizumab was mapped with surface display, the results of which explained the non-responsiveness of Eculizumab treatment among a patient group due to a mutated C5 gene. With this in mind, we showed efficacy in treatment of the mutated C5 variants using a drug binding to another site on C5, suggesting that our approach can be used to guide treatment in precision medicine. In Paper III, a Gram-positive bacterial display platform was evaluated to complement existing platforms for selection of human scFv libraries. When combined with phage display, a thorough library screening and isolation of nano-molar binders was possible. In Paper IV, a solid phase method for directed mutagenesis was developed to generate functional affinity maturation libraries by simultaneous targeting of all six CDRs. The method was also used to create numerous individual mutants to map the paratope of the parent scFv. The paratope information was used to create directed libraries and deep sequencing of the affinity maturation libraries confirmed the viability of the combination approach. Taken together, precise epitope/paratope information together with display technologies have the potential to generate attractive therapeutic antibodies and direct treatment in precision medicine.QC 20170418</p
    corecore