5,348 research outputs found

    Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing

    Full text link
    This work considers the trade-off between accuracy and test-time computational cost of deep neural networks (DNNs) via \emph{anytime} predictions from auxiliary predictions. Specifically, we optimize auxiliary losses jointly in an \emph{adaptive} weighted sum, where the weights are inversely proportional to average of each loss. Intuitively, this balances the losses to have the same scale. We demonstrate theoretical considerations that motivate this approach from multiple viewpoints, including connecting it to optimizing the geometric mean of the expectation of each loss, an objective that ignores the scale of losses. Experimentally, the adaptive weights induce more competitive anytime predictions on multiple recognition data-sets and models than non-adaptive approaches including weighing all losses equally. In particular, anytime neural networks (ANNs) can achieve the same accuracy faster using adaptive weights on a small network than using static constant weights on a large one. For problems with high performance saturation, we also show a sequence of exponentially deepening ANNscan achieve near-optimal anytime results at any budget, at the cost of a const fraction of extra computation

    Self Calibration of Tomographic Weak Lensing for the Physics of Baryons to Constrain Dark Energy

    Full text link
    Numerical studies indicate that uncertainties in the treatment of baryonic physics can affect predictions for shear power spectra at a level that is significant for forthcoming surveys such as DES, SNAP, and LSST. Correspondingly, we show that baryonic effects can significantly bias dark energy parameter measurements. Eliminating such biases by neglecting information in multipoles beyond several hundred leads to weaker parameter constraints by a factor of approximately 2 to 3 compared with using information out to multipoles of several thousand. Fortunately, the same numerical studies that explore the influence of baryons indicate that they primarily affect power spectra by altering halo structure through the relation between halo mass and mean effective halo concentration. We explore the ability of future weak lensing surveys to constrain both the internal structures of halos and the properties of the dark energy simultaneously as a first step toward self calibrating for the physics of baryons. This greatly reduces parameter biases and no parameter constraint is degraded by more than 40% in the case of LSST or 30% in the cases of SNAP or DES. Modest prior knowledge of the halo concentration relation greatly improves even these forecasts. Additionally, we find that these surveys can constrain effective halo concentrations near m~10^14 Msun/h and z~0.2 to better than 10% with shear power spectra alone. These results suggest that inferring dark energy parameters with measurements of shear power spectra can be made robust to baryonic effects and may simultaneously be competitive with other methods to inform models of galaxy formation. (Abridged)Comment: 18 pages, 11 figures. Minor changes reflecting referee's comments. Results and conclusions unchanged. Accepted for publication in Physical Review

    Investigation of Urban Air Temperature and Humidity Patterns during Extreme Heat Conditions Using Satellite-Derived Data

    Get PDF
    Extreme heat is a leading cause of weather-related human mortality. The urban heat island (UHI) can magnify heat exposure in metropolitan areas. This study investigates the ability of a new MODIS-retrieved near-surface air temperature and humidity dataset to depict urban heat patterns over metropolitan Chicago, Illinois, during June–August 2003–13 under clear-sky conditions. A self-organizing mapping (SOM) technique is used to cluster air temperature data into six predominant patterns. The hottest heat patterns from the SOM analysis are compared with the 11-summer median conditions using the urban heat island curve (UHIC). The UHIC shows the relationship between air temperature (and dewpoint temperature) and urban land-use fraction. It is found that during these hottest events 1) the air temperature and dewpoint temperature over the study area increase most during nighttime, by at least 4 K relative to the median conditions; 2) the urban–rural temperature/humidity gradient is decreased as a result of larger temperature and humidity increases over the areas with greater vegetation fraction than over those with greater urban fraction; and 3) heat patterns grow more rapidly leading up to the events, followed by a slower return to normal conditions afterward. This research provides an alternate way to investigate the spatiotemporal characteristics of the UHI, using a satellite remote sensing perspective on air temperature and humidity. The technique has potential to be applied to cities globally and provides a climatological perspective on extreme heat that complements the many case studies of individual events

    Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain

    Get PDF
    Although recent studies have revealed more widespread occurrences of magnetofossils in pre-Quaternary sediments than have been previously reported, their significance for paleomagnetic and paleoenvironmental studies is not fully understood. We present a paleo- and rock-magnetic study of late Miocene marine sediments recovered from the Guadalquivir Basin (SW Spain). Well-defined paleomagnetic directions provide a robust magnetostratigraphic chronology for the two studied sediment cores. Rock magnetic results indicate the dominance of intact magnetosome chains throughout the studied sediments. These results provide a link between the highest-quality paleomagnetic directions and higher magnetofossil abundances. We interpret that bacterial magnetite formed in the surface sediment mixed layer and that these magnetic particles gave rise to a paleomagnetic signal in the same way as detrital grains. They, therefore, carry a magnetization that is essentially identical to a post-depositional remanent magnetization, which we term a bio-depositional remanent magnetization. Some studied polarity reversals record paleomagnetic directions with an apparent 60-70 kyr recording delay. Magnetofossils in these cases are interpreted to carry a biogeochemical remanent magnetization that is locked in at greater depth in the sediment column. A sharp decrease in magnetofossil abundance toward the middle of the studied boreholes coincides broadly with a major rise in sediment accumulation rates near the onset of the Messinian salinity crisis (MSC), an event caused by interruption of the connection between the Mediterranean Sea and the Atlantic Ocean. This correlation appears to have resulted from dilution of magnetofossils by enhanced terrigenous inputs that were driven, in turn, by sedimentary changes triggered in the basin at the onset of the MSC. Our results highlight the importance of magnetofossils as carriers of high-quality paleomagnetic and paleoenvironmental signals even in dominantly terrigenous sediments.This study was funded by the Guadaltyc project (MINECO, CGL2012–30875), ARC grant DP120103952, and NSFC grant 41374073
    • …
    corecore