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ABSTRACT

Extreme heat is a leading cause of weather-related human mortality. The urban heat island (UHI) can

magnify heat exposure in metropolitan areas. This study investigates the ability of a new MODIS-retrieved

near-surface air temperature and humidity dataset to depict urban heat patterns over metropolitan Chicago,

Illinois, during June–August 2003–13 under clear-sky conditions. A self-organizing mapping (SOM) tech-

nique is used to cluster air temperature data into six predominant patterns. The hottest heat patterns from the

SOM analysis are compared with the 11-summer median conditions using the urban heat island curve

(UHIC). The UHIC shows the relationship between air temperature (and dewpoint temperature) and urban

land-use fraction. It is found that during these hottest events 1) the air temperature and dewpoint temperature

over the study area increase most during nighttime, by at least 4K relative to the median conditions; 2) the

urban–rural temperature/humidity gradient is decreased as a result of larger temperature and humidity in-

creases over the areas with greater vegetation fraction than over those with greater urban fraction; and 3) heat

patterns grow more rapidly leading up to the events, followed by a slower return to normal conditions af-

terward. This research provides an alternate way to investigate the spatiotemporal characteristics of the UHI,

using a satellite remote sensing perspective on air temperature and humidity. The technique has potential to

be applied to cities globally and provides a climatological perspective on extreme heat that complements the

many case studies of individual events.

1. Introduction

More than 50% of the global population lives in urban

areas (WorldHealthOrganization 2010), which cover less

than 0.5% of the world’s total land area (Schneider et al.

2009). The proportion of persons living in urban areas is

likely to grow in the future (Cohen 2003). The urban

environment is a complex system, involving concentrated

human activities and integrated ecosystem vulnerabil-

ities. Consequently, public health and living conditions

are growing concerns in urban areas, especially given

increasing trends toward urbanization, particularly in

developing countries (Cohen 2006).

Extreme heat is a leading cause of weather-related

human mortality (Borden and Cutter 2008; Kalkstein

andGreene 1997; Basu and Samet 2002; O’Neill and Ebi

2009; Peng et al. 2011). For example, more than 3000

reported deaths were related to excessive heat exposure

during 1999–2003 in the United States (Centers for

Disease Control 2006). The Chicago (Illinois) heat wave

in 1995 was responsible for more than 700 heat-related

deaths (Whitman et al. 1997; Semenza et al. 1996), while

the 2003 heat waves in Europe contributed to over 70000

deaths (Robine et al. 2008). Anthropogenic climate

change is likely to amplify extreme heat events in cities

(Barriopedro et al. 2011; McCarthy et al. 2010); future

projections suggest more frequent, intense, and longer

heatwaves (Meehl andTebaldi 2004), whichmay increase

mortality in cities (McGeehin andMirabelli 2001; O’Neill

and Ebi 2009; Peng et al. 2011; Patz et al. 2005).
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The urban heat island (UHI; Oke 1982) is a common

phenomenon in which cities exhibit higher temperatures

than their adjacent rural surroundings. It is attributed to

the progressive modification of land surface materials

and structures as well as intensive human activities

(Rizwan et al. 2008). The UHI effect can amplify heat

waves (Livezey and Tinker 1996) and air pollution

(Sarrat et al. 2006), elevating the risk for health prob-

lems among urbanites, especially during summer. It is

critical to understand the behavior of the UHI during

extreme heat events. Recent studies discuss the in-

teraction between the UHI and heat waves through

model simulations (Li andBou-Zeid 2013) and a network

of groundobservations (Basara andBasara 2010). Fischer

et al. (2012) discussed the impact of climate change on the

frequency of extreme heat events and the consequences

for urban and rural heat stress. The impact of mitigation

strategies, including increasing vegetation coverage and

raising the albedos of built surfaces such as roofs, have

been simulated for extreme heat conditions (Zhou and

Shepherd 2010), with the conclusion that increasing

vegetation may be a better choice for reducing extreme

heat. However, the spatiotemporal distribution of tem-

perature and humidity across urban and adjacent peri-

urban areas during extreme heat events is not well

understood. Moreover, the interaction between the UHI

and extreme heat events varies regionally because of

differences in the geographic setting, urban morphology,

and the large-scale drivers of heat waves. Therefore,

methodologies for investigating the UHI that can be

readily applied to a variety of different cities are needed.

This study builds on recent research that assessed the

accuracy of near-surface air temperature and humidity

information derived fromModerate-Resolution Imaging

Spectroradiometer (MODIS) atmospheric profiles for

UHI studies (Hu and Brunsell 2015). While the use of

satellite data for UHI research has limitations (e.g., data

are only valid for clear-sky conditions), given that

MODIS data have global coverage and span nearly 15yr,

there is strong potential to employ MODIS data for cli-

matological studies of UHI characteristics. The purpose

of this study is to enhance understanding of spatiotem-

poral patterns of temperature and humidity across met-

ropolitan Chicago during the most intense extreme heat

conditions. We aim to better characterize how surface

heterogeneity influences near-surface temperature and

humidity over the life cycle of extreme heat events.

2. Data and methods

Chicago is one of the largest cities in the United

States, with about 9 million people living in a metro-

politan area of 28 3 103 km2. Chicago is located near

Lake Michigan (Fig. 1) and has a humid continental

climate consisting of warm-to-hot summers and cold

winters with relatively uniform precipitation throughout

the year. Chicago has had a number of well-documented

heat waves, for example, the July 1995 heat wave, which

caused several hundred heat-related deaths (Semenza

et al. 1996; Whitman et al. 1997). It is therefore essential

to understand the interaction of extreme heat events and

Chicago’s built environment, which can exacerbate heat

stress exposure.

a. Remotely sensed and ground-based observational
data

We used near-surface temperature and humidity

fields from the MODIS atmospheric profile product

(MOD07_L2 for Terra and MYD07_L2 for Aqua) at

5-km resolution over Greater Chicago during summers

(June–August) from 2003 to 2013 (Hu and Brunsell

2015). MODIS is aboard NASA’s Terra and Aqua sat-

ellites, and has a twice-daily overpass frequency for each

satellite. The median local standard times of the four

satellite overpasses are approximately 0130 (Aqua-

night), 1030 (Terra-day), 1230 (Aqua-day) and 2130

(Terra-night). MODIS atmospheric profiles are re-

trieved from multiple infrared bands of MODIS

FIG. 1. The urban land-use fractions in 5-kmgrids estimated from

the MODIS MCD12Q1 data in 2012. The gray area indicates fully

vegetated pixels at 5-km resolution. The blue area in the domain is

Lake Michigan, which is masked for later analysis. The plus sym-

bols indicate the locations of ground weather stations in the

study area over land.
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through a statistical-regression-based retrieval process

(Seemann et al. 2003, 2006; Borbas et al. 2011). The

near-surface atmospheric temperature and humidity are

extrapolated from MODIS atmospheric profiles to the

surface level using the hydrostatic approximation. More

details concerning data preparation and processing can

be found in Hu and Brunsell (2015). Only clear-sky data

are used because infrared channels cannot detect the

surface through clouds.

According to Hu and Brunsell (2015), the near-

surface air temperature from MODIS atmospheric

profiles is representative of the lower upper boundary

layer (UBL); however, the effects of the underlying

urban morphology are not explicitly accounted for be-

cause the 5-km footprint is too coarse to resolve indi-

vidual features such as buildings. Since the surface,

urban canopy layer, and UBL UHIs are linked but

governed by different physical mechanisms, leading to

diverse diurnal behaviors (Oke 1995), the results within

this study should be interpreted carefully.

The MODIS yearly land-cover product (MCD12Q1)

for 2003–12 at 500m is used to examine the impact of

land-cover types on the surface temperatures. No land-

cover data were available for 2013 at the time of the

analysis, so 2012 land-cover data were applied to the

2013 analysis. Figure 1 illustrates the spatial distribution

of urban land-use fraction in every 5-km grid cell over

the study area in 2012. The urban land-use fraction at

5-km resolution is aggregated from MODIS land-cover

data from 500m at an accuracy of 1% for each land-cover

type in each 5-km grid.

Local weather station observations were downloaded

from the Integrated Surface Global Hourly dataset via

the National Climatic Data Center (NOAA/NCDC

2001). The observations are used for validation and

analyses. Quality-controlled observations within 1 h of

satellite overpass time are used. The locations of the 20

weather stations used are shown in Fig. 1.

b. Bias correction

Hu and Brunsell (2015) found that the MODIS-

retrieved air and dewpoint temperatures were generally

underestimated for the four satellite overpasses when

compared with ground observations. Figure 2 illustrates

the mean of differences between the MODIS-derived

temperature and the weather station observations, cat-

egorized by urban land-use fraction from 0% to 100%.

The biases for each weather station are spatially consis-

tent across Chicago regardless of how large the urban

land-use fraction is, as evidenced by the small slopes of

the lines (all ,0.004) in Fig. 2. This indicates that the

maximum possible impact of a bias due to the land-cover

heterogeneity is smaller than 0.4K. Similar bias patterns

were found in Toronto and Chicago (Hu and Brunsell

2015). The dissimilar magnitudes of mean biases among

the four satellite overpasses likely result from the exis-

tence of biases from the modeled synthetic radiance

with respect to the MODIS-measured radiance in the

MODIS atmospheric sounding retrieval algorithms

(Seemann et al. 2006; Borbas et al. 2005). The land-

cover-independent bias in Fig. 2 allows us to use the

mean difference calculated from MODIS for each sat-

ellite overpass and the corresponding observations from

all the weather stations (regardless of urban land-use

fraction) to effectively and efficiently correct the

MODIS bias. The values of the root-mean-square error

(RMSE) before and after bias correction are shown in

Fig. 3. In general, MODIS nighttime data are more ac-

curate, and the RMSEs after correction are about 3K or

less. A spatial-scale mismatch existing between the 5-km

FIG. 2. The mean biases of MODIS retrievals for air temperature (red) and dewpoint temperature (blue) in comparison with corre-

sponding ground observations in pixels containing weather stations. The results are plotted as a function of urban land-use fraction and are

shown for each of the four satellite overpasses. The colored lines represent the linear regression of the bias vs urban land-use fraction.
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footprint of theMODIS retrievals and a given point-based

ground observation within the footprint, as well as the

observing time gaps (less than 1h) between MODIS and

weather stations, contribute to the instant RMSEs shown

in Fig. 3, and it is not possible to remove these effects from

the RMSE calculation. The magnitude of the RMSEs is

relatively large compared to the magnitude of UHI, but

our analyses are generally based on the temporally ag-

gregated results, which likely significantly decrease the

impact of these errors on quantifying the spatial vari-

ability of temperatures across the study area. The results

regarding the urban–rural contrast should be well repre-

sented by the methodology adopted by this study.

c. Identifying heat patterns in space and time

We hypothesize that the spatial patterns of tempera-

ture and moisture in urban areas are different during

extreme heat events than during normal summer condi-

tions. The distinct thermal properties of urban and rural

surfaces may result in different temperature responses to

heat waves than to ‘‘normal’’ conditions, especially con-

sidering that the surface moisture distribution—which

significantly modulates the partitioning of latent heat

fluxes and therefore temperature—may be substantially

altered across themetropolitan region during heat waves.

Taking advantage of the comprehensive spatial cover-

age provided by MODIS, we tested this hypothesis

by applying a self-organizing map (SOM) technique

(Kohonen 1990) to the air temperature data. SOMs are

often used to identify distinct spatial patterns in geo-

physical data in an unsupervised fashion. We categorized

each overpass from the 11-yr summertime air tempera-

ture record into the six predominant SOM classes (i.e.,

patterns) and sorted the results from the hottest class

(class 1) to the coolest class (class 6). We chose the op-

timal number of SOM classes to retain through a trial-

and-error process. We tested SOM classes with four, six,

and nine nodes and found that using six optimized the

balance between having a sufficient number of samples

for the class containing the hottest clear-sky days/nights

and having distinguishable patterns among classes. The

areas covered by LakeMichiganweremasked to decrease

the impact of heat patterns over water, which largely

differs from land surfaces. Images having extensive cloud

FIG. 3. Density scatterplots of near-surface (top) air temperature and (bottom) dewpoint temperature from MODIS and ground

observations after the mean difference adjustments for each satellite overpass. The RMSEs after and before correction are labeled as

RMSE and RMSE_bf, respectively.
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coverage mask the underlying urban surface temperature

patterns; therefore, images with .27% of missing data

over land were excluded from the SOM training. Land–

atmosphere interaction plays an important role in de-

scribing the spatial variation of heat distribution via both

temperature and humidity (Fischer et al. 2007). To assess

this interaction and covariation between air temperature

and humidity over metropolitan Chicago, the humidity

information from MODIS, in the form of dewpoint tem-

perature, was assigned to six classes according to the SOM

results for air temperature. For example, if the air tem-

perature image for the Aqua daytime overpass on 6 July

2011 was categorized into class 3 by the SOM, the corre-

sponding dewpoint temperature from the same overpass

and day was sorted into class 3 as well.

We used SOMs to cluster the heat patterns instead of

directly utilizing ground observations from weather

stations, because the measurements from a handful of

locations are inadequate to distinguish heat patterns.

We tested the temporal consistency between SOM class

1 (the hottest class) and the corresponding observations

from Chicago O’Hare International Airport (WMO site

code: 725300) at the same quantile of class 1 in all

trained data. A temporal agreement was found 58%–

76% of the time, depending on the satellite overpass

time. However, the consistency varies substantially

among the 20 weather stations across the study area of

Chicago, likely because of station-specific factors such as

the length of the station’s record, and the microclimate

and location of the site. As a result, it is difficult to

consistently categorize ‘‘hottest days/nights’’ across

Greater Chicago based on one or more weather stations.

Furthermore, the criteria to identify the hottest patterns

are not universal for each city because of their microcli-

matic dissimilarity, potentially leading to incomparability

among cities and for different times of a day.

To quantify the influence of urban land use on tem-

perature and moisture at the metropolitan scale, the

‘‘urban heat island curve’’ (UHIC; Hu and Brunsell

2015) was used. The UHIC is designed to explore the

spatial relationship between urban atmospheric de-

scriptors (e.g., air temperature and dewpoint tempera-

ture) and urban surface properties in terms of urban

land-use fraction. We estimated urban fraction in a

given 5-km grid cell by aggregating the 500-m MODIS

land-cover data (shown in Fig. 1). The temperature and

dewpoint temperature data in pixels with.1% of water

surface area were discarded because of the strong ther-

mal properties of water. We drew the median value of

the temperature or dewpoint temperature distribution

in each 5% interval of urban land-use fraction, and

then a curve of temperature or dewpoint temperature

was constructed as a function of urban land-use fraction.

The 25% and 75% quantiles of temperature/dewpoint

temperature in each 5% urban land-use fraction were

added to the UHIC to illustrate the variation of results.

We added the median temperature of fully vegetated

pixels in each UHIC as a reference to quantify the im-

pact from different urban land-use intensities. The

UHIC allows one to compare the UHI intensity across

space and time and also avoids the dilemma of urban–

rural divisions in regions like Chicago that have exten-

sive suburban areas mixed with agricultural and park

areas; more details about the methodology can be found

in Hu and Brunsell (2015). The UHIC was applied to

each SOM class as well as to the entire dataset to suc-

cinctly summarize spatial heat patterns for extremely

hot versus normal conditions.

Analyzing the temporal distribution of the SOM heat

patterns over the 11 summers is helpful for under-

standing the general evolution of extreme heat events.

To characterize the temporal patterns for the hottest

SOM class, the dates of SOM class 1 were identified for

each satellite overpass. Then, the frequency of each class

for the consecutive four days preceding and following

each SOM class 1 event was calculated. Moreover, we

explored the correlation between each class 1 event

from a given satellite overpass with the other three

overpasses, which aids in understanding the probability

of hottest patterns occurring over a consecutive period,

and whether the heat pattern in a given satellite over-

pass may be predictive of heat patterns in subsequent

overpasses.

3. Results and discussion

a. Spatial analysis of urban heat patterns

The resulting six patterns identified by SOM classifi-

cation indicate different levels of summertime heat,

from the hottest (class 1) to the coolest (class 6). The

results for Aqua daytime (1230) and nighttime passes

(0130) are illustrated in Figs. 4a and 4b, respectively.

The patterns forTerra overpasses are similar. The image

number as well as the mean air and dewpoint tempera-

ture for each SOM class are illustrated in Fig. 4c. Gen-

erally, the majority of days and nights belong to classes

2–5. Class 1 accounts for 11.2% (Aqua-night), 12.7%

(Terra-day), 5.6% (Aqua-day), and 6.3% (Terra-night)

of the total SOM-trained data. The total number of

clear-sky images available for each overpass time ranges

from 519 to 526, which is about half of the total possible

satellite overpasses in 11 summers (1012 days). The

daytime (nighttime) mean air temperature difference

from one class to the next is about 2.3K (2.9K). It is

noteworthy that the temperature difference between
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class 1 and 2 is the largest when compared with the

differences between all other consecutive classes. The

class 1 heat pattern during the daytime illustrates rela-

tively larger spatial variations among the hottest days

compared to other classes. In contrast, the warmest

clear-sky nights (class 1 for nighttime) exhibit compar-

atively more spatial homogeneity.

To better understand the magnitude of theUHI effect

for the hottest summer conditions, the UHICs of air

temperature and dewpoint temperature in classes 1 and

2 and the UHIC of all SOM-trained data are estimated

and shown in Fig. 5. The dashed lines describe the me-

dian temperature of fully vegetated pixels in the study

area (gray areas in Fig. 1), allowing the background

temperature and urban-influenced temperature for the

same weather conditions to be compared. Because of

urban sprawl, the median temperatures of pixels with

low urban land-use fractions (1%–5%) and fully vege-

tated pixels are nearly identical across the four satellite

overpasses. Therefore, the temperature range of a given

UHIC can represent the maxima of the UHI magnitude

across space for each satellite overpass.

For air temperature (the first row of Fig. 5), the overall

shapes and variability of the UHICs during the hottest

daytime conditions are generally consistent with those

under normal summer conditions in terms of how in-

creasingly urbanized surfaces influence temperatures.

However, the slope and range of temperature is smaller

for class 1 (the hottest summer class). The urban–

rural temperature range for class 1 over the Chicago

FIG. 4. The averaged air temperature (K) maps of the six SOM classes at the (a)Aqua-day and (b)Aqua-night satellite overpasses. The

contour lines show the corresponding standard deviation of temperature in each SOM class. The number of days that belong to each class

is labeled in the parentheses. (c) The number of images (gray bar plot; right y axis) and the mean air and dewpoint temperatures (red and

blue lines, respectively; left y axis) for each SOM class.
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metropolitan area is about 3.2 and 2.7K for the Terra

and Aqua daytime overpasses, respectively, a decrease

of at least 1K relative to the median 11-summer condi-

tions, which are depicted as gray solid lines in Fig. 5.

These results are consistent with the findings for the

2003 heat wave in Paris with a significant enhanced

daytime rural land surface temperature (Dousset et al.

2011). The response of nighttime air temperature to the

urban surface influence under the hottest and median

summer conditions notably differs from daytime con-

ditions, in both UHIC variation and the temperature

range from the least urbanized to the most urbanized

areas. The urban–rural temperature range estimated

from class 1 UHICs decreases to 1.1K for Terra and

Aqua nighttime overpasses. As with the daytime con-

ditions, these values are smaller than the median

nighttime urban–rural range of up to 2.7K (Terra-night)

and 3.7K (Aqua-night). Therefore, temperature vari-

ability is lowest across the metropolitan region during

the hottest days and nights.

The UHICs of dewpoint temperature are also shown

in Fig. 5 (second row) because of their important role in

heat stress during extremely hot weather conditions.

The ubiquitous higher dewpoint temperatures occur

during the hottest conditions, in agreement with findings

for individual heat waves such as the July 1995 event in

Chicago (Kunkel et al. 1996; Livezey and Tinker 1996),

indicating that higher humidity may particularly exac-

erbate heat stress during heat waves. This pattern in

Chicago during the heat waves in a recent decade was

found highly correlated to the anomalies of regional

precipitation prior to the heat event as well as the

change of agricultural practices (Changnon et al. 2003).

Interestingly, within each class a strong urban moisture

deficit (relative to rural areas) occurs for the afternoon

(Aqua-day) overpass, when strong afternoon convective

activity is often present. The strong convection may

accelerate the dissipation of water vapor within the

planetary boundary layer. Additionally, the more im-

pervious urban surfaces may promote runoff and inhibit

FIG. 5. The UHICs constructed from SOM classes 1–2 (red and orange for air temperature, and blue and green for dewpoint tem-

perature) and all SOM-trained data (gray) for MODIS (top) air temperature and (middle) dewpoint temperature at four satellite

overpasses. The solid lines represent the UHICs, and dashed lines show the median temperatures of fully vegetated pixels in the cor-

responding classes. The color-shaded belt defines the 25% and 75% quantiles of temperature distribution in each urban land-use-fraction

group. (bottom) The temperature differences between UHIC in class 1 (or class 2) and one constructed from all trained data; red and

orange represent the air temperature, and blue and green represent the dewpoint temperature.
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afternoon evaporation (because of the lack of a moisture

source) compared to rural areas (Champollion et al.

2009). The hottest conditions illustrate a stronger spatial

variation of humidity. The similar patterns of UHIC for

class 1 and class 2 highlight the strong moisture limita-

tions that occur during the hottest afternoons. To explain,

despite large differences in dewpoint temperatures be-

tween class 1 and class 2 during the morning (Terra-day),

by afternoon the dewpoint temperature differences be-

tween the two classes become negligible (Aqua-day).

This may be partly due to vegetation controls on evapo-

transpiration, which is supported by the fact that after-

noon dewpoint temperatures are lowest over the most

urbanized (least vegetated) surfaces.

The nocturnal urban moisture excess (UME) is pres-

ent under the median summer conditions, which may

result from slightly higher urban temperatures that en-

courage evaporation and inhibit condensation well into

the night, and/or additional water vapor sources from

anthropogenic emissions, etc. (Champollion et al. 2009;

Kuttler et al. 2007; Richards 2005; Mayer et al. 2003).

Conversely, and similar to air temperature, the urban–

rural range of the nocturnal humidity is comparatively

lower during the hottest conditions, showing a more

homogeneous spatial pattern. Unfortunately, the hottest

summer nights have a combination of higher tempera-

ture and humidity relative to median conditions, and

with less spatial variability over metropolitan Chicago. In

the city where the use of air conditioning is widespread,

especially for the elderly and the poor (Klinenberg 2002),

these conditions may exacerbate heat stress.

As urban land-use fraction increases, the air and

dewpoint temperature anomalies between class 1 and all

SOM-trained data are decreasing, as shown in the third

row of Fig. 5. The magnitude of decreasing trends varies

for different satellite overpasses, and nighttime shows a

larger spatial change in general. For instance, theAqua-

night air temperature anomalies are up to 7.9K where

the urban land-use fractions are low (1%–5%), while the

anomalies decline to 5.3K for intensively urbanized

areas. The trends of dewpoint temperature anomalies

are similar to air temperature. In other words, heat

events in Chicago generally result in smaller urban–rural

temperature–moisture gradients as a result of greater

temperature and humidity increases over vegetated–rural

areas, particularly during nighttime. It is notable that the

UHIC is constructed from the entire or the part (SOM

class 1 or 2) of SOM-trained dataset, which integrates the

influence from land-cover changes during these 11 yr; this

impact is not separated from the analysis.

Air temperature and dewpoint temperature over both

rural and urban areas increase during extreme heat

events, but the magnitude of the increase is higher for

the more vegetated rural areas, which reduces the

humidity gradient between rural and urban regions.

Vegetation in the rural areas and nonurban areas within

the urban environment (e.g., parks) generally exhibits

enhanced latent heat fluxes compared to urban surfaces

because of the higher moisture content of vegetated

surfaces, which means there is less energy available for

sensible heating. However, during heat waves high

evapotranspiration rates over vegetated surfaces may

deplete soil moisture more quickly than under normal

conditions, which would free up additional energy for

sensible heating and lead to differentially large warming

over vegetated surfaces relative to urban surfaces.

Moreover, the UHI is also sensitive to the spatial vari-

ability of humidity, where water vapor provides a radia-

tive force that probably influences the UHI development

(Lee 1991; Holmer and Eliasson 1999; Mayer et al. 2003).

The relatively homogeneous distribution of high night-

time water vapor in the atmosphere during heat events

drives a more equal spatial distribution of downward

longwave irradiation (Mayer et al. 2003; Eliasson and

Holmer 1990), which further reduces the urban–rural

temperature differences in contrast to the strong noctur-

nal UME during the median summer nights with a

strong UHI.

The principal cause of extreme heat events is gener-

ally linked with large-scale meteorological forcing, with

strong high pressure systems often being associated with

hot and humid conditions in Chicago (Livezey and

Tinker 1996). Local and microclimatic urban effects

contribute to the unique spatial patterns observed dur-

ing these events (Kunkel et al. 1996). When prolonged

large-scale forcing conditions (e.g., atmospheric block-

ing) leads to drought, extreme heat can be exacerbated

because evapotranspiration is more likely to be limited

because of lack of moisture, so most energy is parti-

tioned into sensible heating (Cornic andMassacci 1996).

This is one possible reason for the decreased spatial

heterogeneity of air temperature during the hottest

days, since changes from latent toward sensible heating

will be particularly large over (the generally moister)

vegetated/rural surfaces relative to urban surfaces. To

test this hypothesis, we summarized the U.S. drought

category information associated with each SOM classi-

fication for the Aqua-day overpass, in terms of per-

centage of surface area within each of four rural

watersheds surrounding the metro area that fall into five

different levels of drought conditions. The results are

shown in Fig. 6. When compared with the other classes,

SOM classes 1 and 2 clearly have more surface area

within more severe drought categories over these rural

areas. The total drought areas (D0–D4) sum up to about

60% of the area within each watershed during the SOM
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class 1 events, which would mean more sensible heating

(and higher temperatures) would occur in rural areas

during extreme heat events.

Another reason is that hot and clear weather condi-

tions encourage convection because of intensive surface

heating during the daytime, thereby promoting more

horizontal mixing near the surface (urban–rural advec-

tion), leading to more homogeneous heat distributions

(Haeger-Eugensson and Holmer 1999). Indeed, wind

speeds observed at Chicago O’Hare International Air-

port are higher by 0.56–1.36 kmh21 during the hottest

heat patterns (class 1) for all four daily satellite over-

passes when compared with median summer conditions,

particularly in the afternoon (Aqua-day) and after

midnight (Aqua-night) for which wind speeds were

statistically significantly higher (p , 0.05). Wind di-

rections are different as well during the hottest events.

The predominant wind direction during class 1 events is

southwesterly at all times of day, which has been linked

to an amplified ridge in the western and central United

States (Livezey and Tinker 1996). However, during

median conditions, which are usually associated with

weak large-scale forcing, the winds are northeasterly

during daytime/evening and southwesterly at night,

consistent with the diurnal lake–land breeze cycle.

Given the cooling effect of lake breezes on temperatures

FIG. 6. (a) Percentage area within four rural watersheds surrounding metropolitan Chicago that are within each of the five drought

monitor categories for each SOM class belonging to the Aqua-day (1230) overpass during summers from 2003 to 2013. The drought

monitor categories are abnormally dry (D0), moderate drought (D1), severe drought (D2), extreme drought (D3), and exceptional

drought (D4). The hydrologic unit code (HUC) identifies the watershed. (b) Map showing the four rural watersheds surrounding Chicago

mentioned in (a) that were used to assess drought conditions for different SOM classes. The grayscale map shows the urban land-use

fraction.
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over land, the diminished lake-breeze circulation may

exert a positive feedback that exacerbates extreme heat

events over Chicago. In summary, weather systems can

efficiently decrease the heat spatial heterogeneity dur-

ing the hottest events by increasing turbulence and

ventilation (Runnalls and Oke 2000).

This study uses a unique dataset and methodologies

that lead to somewhat different conclusions than those

of other research on the interaction between UHI and

heat waves or extreme heat events. For example, Li and

Bou-Zeid (2013) found that the UHI (i.e., the rural–

urban temperature contrast) is amplified during heat

waves in the Baltimore, Maryland–Washington, D.C.,

region, based on modeling and observations from two

ground sites. Since the MODIS-based air temperature

and humidity information more likely depicts the char-

acteristics of UBLUHIs during the extreme heat events,

the different nature of UHI types may result in some

dissimilarities. Other than that, our study comprehen-

sively integrates spatial information rather than assess-

ing paired information from urban and rural points, and

shows a larger UHI effect during daytime than night-

time for the hottest conditions, although the overall

UHI (rural–urban temperature contrast) is diminished.

As Li andBou-Zeid (2013)mention, somewhat different

results are obtained when calculating the UHI from

spatially averaged versus point-based data; for example,

the daytime UHI is slightly stronger than the nighttime

UHI during and after the heat waves when using spa-

tially averaged results. Another major difference is that

Li and Bou-Zeid (2013) focus on one multiday heat

event, whereas our results are for all single- and multi-

day clear-sky events over 11 summers. A strong surface

moisture deficit and low wind speeds are major causes of

the extreme heat according to Li and Bou-Zeid (2013).

However, this differs from our general findings for

Chicago, where a strong surface moisture deficit was

observed during the early afternoon for class 1 events,

but at all other times of day conditions are more humid

than for median conditions. Moreover, the near-surface

wind speed was higher in class 1. In general, our results

do show that heat stress is amplified by the urban

built environment during the hottest events, but the

urban–rural contrast (the UHI) is reduced, specifically

at night. We conclude that this departure from the re-

sults of Li and Bou-Zeid (2013) is likely due to differ-

ences in the types of UHI, geolocation, methodology,

and time scales of analysis.

b. Temporal characteristics of urban heat patterns

To identify the temporal distribution of the hottest

days and nights, we plotted a time series of SOM classes

over the 11-yr period for each overpass time (Fig. 7).

The ground observations within 61 h of satellite over-

passes at Chicago O’Hare International Airport are also

illustrated. Although the heat patterns were assessed

independently for individual satellite overpasses, the

four snapshots of the diurnal cycle share similar tem-

poral patterns among the SOM classes. The diurnal

features of heat patterns in the hottest conditions may

help determine the predictability of heat pattern among

the different satellite overpasses.

FIG. 7. The time series of SOM classes (colored vertical lines) and ground temperature observations (black points/lines) at Chicago

O’Hare International Airport (WMO site code: 725300) during summers from 2003 to 2013. The white areas indicate days on which no class

was assigned, which may be due to the presence of a large amount of clouds or data unavailability (e.g., in July 2006 Aqua overpasses).
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FIG. 8. The normalized occurrences of SOM classes (solid color-coded lines) for the consecutive four days before and after each SOM

class 1 event. Each row is calculated conditioned on the SOM class 1 events defined by the satellite overpass indicated in the row header

(left strips in green). The number of class 1 events is labeled in the parentheses in the row header. Each column uses the SOMclassification

for the satellite overpass indicated in the column header, conditioned on the SOMclass 1 defined by different satellite overpasses indicated

in the rows. The green-shaded panels on the diagonal are the frequency of each SOMclass based on the class 1 defined by the same satellite

overpass.Aqua-night,Terra-day,Aqua-day, andTerra-night are ordered according to the diurnal cycle starting from 0000, and themedian

overpass times are labeled in the column headers. Gray lines show the frequency of days/nights that are not classified because of missing

data (clouds) for the SOM analysis only.
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The temporal distributions of the six SOM classes for

four consecutive days before and after the date of each

SOM class 1 (hottest) event are statistically assessed.

The normalized occurrences of class 1 and other classes

within the 9-day windows of class 1 are illustrated in

Fig. 8. The figures on the diagonal of Fig. 8 lattice

(green-shaded figures) particularly show the distribu-

tions of class types using class 1 defined by the same

satellite overpass time. Statistics were computed with a

moving window of each 9-day period with the fifth date

belonging to the class 1 pattern, so the class 1 curve on

the diagonal is symmetrical. These values indicate the

probability of occurrence for class 1 patterns on con-

secutive days. For example, there is approximately a

20% chance of two consecutive days with the class 1

pattern for all four satellite overpass times. The proba-

bility that three days belong to class 1 drops below 10%.

Interestingly, in the green-shaded figures, the probabil-

ity of class 2 (orange lines) after class 1 is higher than

that before class 1 (the same is true for class 3, shown by

yellow lines). This result suggests that heat patterns

grow more rapidly leading up to the hottest events,

followed by a slower return to normal conditions after-

ward. The fast evolution may be related to the change of

large-scale weather conditions, which is beyond the

scope of this study. And the extended impact in sub-

sequent days may be attributed to the cumulative stor-

age of heat over the urban built environment.Moreover,

plants also require time to recover after heat and/or

water stress, so evapotranspiration may be inhibited in

the days after an extreme heat event.

The temporal variations for cloudy days (‘‘no data’’ in

Fig. 8) related to the date of class 1 are also informative.

Cloudy or partly cloudy conditions occur about 50% of

the time preceding class 1 events, while clouds are less

likely in the dates afterward. This pattern is especially

strong for daytime. Possibly, the exhaustion of surface

moisture during heat events decreases surface water

availability for cloud formation after class 1 events.

Also shown in Fig. 8 is the relationship between class 1

events for one satellite overpass and the various SOM

patterns for the other three overpass times by each row.

For example, the class 1 dates defined by Terra-night

overpass (Fig. 8, row d) were used to analyzeAqua-night

SOM class distributions (Fig. 8, column 1), and the re-

sults are shown in Fig. 8d-1. When these 35 class 1 days

were found during Terra-night overpasses (0 day, before

midnight), as expected, about 60% of Aqua-night over-

passes (11 day, after midnight) also are class 1, and about

20% are class 2, and otherwise it is cloudy. In another

example, about 60% of class 1 events occur during early

afternoon (Aqua-day, Fig. 8 column 3) when the late

morning (Terra-day, Fig. 8 row b) is class 1 (Fig. 8b-3).

Some results summarized from the class distributions

in Fig. 8 are 1) the heat patterns during nighttime are

closely related to the daytime heat patterns preceding

them, and 2) a class 1 pattern during late morning

(Terra-day) is followed by a class 1 pattern the fol-

lowing other three times of a given day more than 50%

of the time. In summary, these results suggest there

may be some short-term predictive skill for extreme

heat events based on patterns observed for previous

overpasses, though it is not presently clear whether

such information could improve upon forecasts from

meteorological models.

4. Conclusions

This research provides an alternate way to investigate

the temporal and spatial characteristics of the UHI

using a satellite remote sensing perspective. By using

SOMs for heat pattern classification and the UHIC for

quantifying urban land-use impacts on near-surface at-

mospheric properties, this study concluded that during

the hottest events in Chicago, heat stress is intensified by

the interaction between both UHI and heat events,

particularly during nighttime, with both air temperature

and dewpoint temperature over the study area being

greater than for median conditions by at least 4K.

Moreover, the urban–rural temperature and humidity

gradients are decreased as a result of larger temperature

and humidity increases over vegetated/rural surfaces

compared to predominantly urban surfaces. A temporal

analysis of the heat pattern distributions for clear-sky

conditions suggests that heat patterns growmore rapidly

leading up to the hottest events, followed by a slower

return to normal conditions afterward. Both the dataset

and methodology presented here have the potential to

be applied to cities globally. This study provides a cli-

matological perspective on extreme heat that comple-

ments the many previous case studies of individual

events. Better characterization of urban heat patterns

will aid decision-makers in mitigating the urban heat

island and in preparing for more frequent and intense

extreme heat events in the future (Oleson et al. 2015).

The UHIC analysis summarizes the climatological,

regionally integrated temperature and moisture spatial

patterns for extreme heat events. Urban extreme heat

events are the result of complex meteorological and

anthropogenically influenced processes acting on mul-

tiple scales. These events vary among one another in

terms of longevity, frequency, intensity, and causality

(Kunkel et al. 1996; Fischer et al. 2007). Clearly, multi-

ple approaches at a variety of temporal and spatial scales

are required to fully understand the causality and nature

of extreme heat events for a given city.
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This analysis is limited to clear-sky conditions. During

daytime, clouds play an important role in determining

theUHImagnitude. Cloudsmodulate the energy budget

by blocking or scattering direct solar radiation, and also

alter the longwave radiation exchange between the at-

mosphere and surface. Daytime clouds generally dampen

the UHI, especially low clouds (Runnalls and Oke

2000). However, a study in London shows a higher day-

time UHI during partially cloudy and cloudy periods in

the summer, which is attributed to rainfall (Kolokotroni

and Giridharan 2008). The nocturnal UHI is generally

larger for clear-sky conditions (Oke et al. 1991; Runnalls

andOke 2000; Kolokotroni andGiridharan 2008). Clouds

influence the net longwave radiation budget at the sur-

face, and decrease the urban–rural contrast at night

(Runnalls and Oke 2000; Yow 2007).

Increasing the fraction of green space in cities is a

widely suggested solution for mitigating the UHI (Zhou

and Shepherd 2010). Of relevance, during the hottest

events we found the biggest increases of temperature

and humidity were for areas with greater vegetation in

Chicago. Plants in rural and urban environments expe-

rience different levels of water and heat stress as a result

of differentmanagement strategies, species, and thermal

environments, which may elicit differential responses,

such as deleterious and/or adaptive changes (Chaves

et al. 2002). These details require scrutiny to elucidate

under what conditions, and at what scales, vegetation

may be beneficial for reducing the UHI.

The MODIS data provide four snapshots of heat

patterns over the diurnal cycle. However, explaining

the evolution of extreme heat events comprehensively

may require data with higher temporal frequency, es-

pecially during critical times such as sunrise and sunset.

Another limitation is that the methodology for esti-

mating the near-surface temperature andmoisture from

MODIS atmospheric profiles has a relatively coarse

spatial resolution (Hu and Brunsell 2015). Therefore,

the temperature and moisture retrievals are represen-

tative of the integrated effects of throughout the urban

boundary layer. This fact should be considered when

interpreting the magnitude of the UHI and when

comparing the results with other UHI studies based on

ground observations.

Urban remote sensing faces issues related to the an-

isotropic thermal properties and structures in the urban

environment (Voogt and Oke 2003; Lagouarde et al.

2004). Although the nature of air temperature should

not be impacted by the sensor view angle, this MODIS

dataset is retrieved from zenith angles ranging from

08 (nadir) to 658, and it is likely that there is some (un-

certain) anisotropic impact. The relatively coarse spatial

resolution of the retrievals may dampen this impact. In

fact, this is a long-term analysis with samples frommany

different view angles, which helps to maximize the

representativeness in space and time of the anisotropic

distributions.

Although there are many challenges associated with

urban remote sensing, the techniques and results pre-

sented within can contribute to a more comprehensive

understanding of the UHI, especially if applied to other

cities in a variety of climatic regions. Augmenting

MODIS retrievals with atmospheric model simulations

may further supplement our understanding of urban

climatology and aid in identifying model weaknesses. It

is also noteworthy that heat stress indices, which provide

better indicators of heat stress than temperature or hu-

midity alone, can be calculated from the air temperature

and dewpoint temperature retrievals. Such information

may benefit studies aimed at assessing the health im-

pacts of extreme heat.
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