8 research outputs found

    A Study of Burkholderia pseudomallei in the Environment of Farms in Thanlyin and Hmawbi Townships, Myanmar.

    Get PDF
    Melioidosis is a tropical infection, first described in Myanmar but now rarely diagnosed there, which is widespread in Southeast Asia. The infection is predominantly acquired by people and animals through contact with soil or water. This study aimed to detect the causative organism, Burkholderia pseudomallei, in environmental samples from farms in Thanlyin and Hmawbi townships near Yangon, Myanmar. One hundred and twenty soil samples and 12 water samples were collected and processed using standard microbiological methods. Burkholderia species were isolated from 50 of the 120 (42%) soil samples but none of the water samples. Arabinose assimilation was tested to differentiate between B. pseudomallei and the nonpathogenic Burkholderia thailandensis, and seven of 50 isolates (14%) were negative. These were all confirmed as B. pseudomallei by a species-specific multiplex polymerase chain reaction (PCR). This is the first study to detect environmental B. pseudomallei in Myanmar and confirms that melioidosis is still endemic in the Yangon area

    Crowding Effect on the Survival Rate of Ornamental Fish (Swordtail)

    No full text
    Survival rate and growth play an important role in rearing of fish. The experiment was conducted from July to December of 2010. The present study was carried out to find the efficiency of different stocking density in Xiphophorus helleri, Swordtail provided with the same live food (Tubifex). A total of 90 healthy fingerlings were selected and used. They were divided into three groups of 5, 10, 15 per group and bred in glass aquaria of 50 liter capacity. Three replicate tanks were made for each stocking density. During experiment the total weight of each group was taken on monthly. Mortality and survival rate were checked in each tank every day. Stocking density had a significant effect on growth and survival. But in present study there is no mortality rate in three different stocking densities. The optimum stocking density for good growth of Xiphophorus helleri fingerlings is 5 fingerling/50 liters feeding at the rate of 5% of total body weight

    A Comparative Study on Phytochemical Screening and Antioxidant Activity of Aqueous Extract from Various Parts of Bauhinia purpurea

    No full text
    In this study, we conducted a comparative investigation into the phytochemical screening and antioxidant activity of aqueous extracts from various parts of the Bauhinia purpurea plant, including leaf, flower, stem bark, and root. The qualitative analysis was performed to screen the phytochemical content of each extract, followed by quantitative analysis to determine the total phenolic and total flavonoid contents. Our findings revealed that different parts of the B. purpureaplant yielded distinct natural products upon extraction. Both the leaf and flower extracts contained alkaloids, flavonoids, saponins, carbohydrates, polyphenols, and phenolics. On the other hand, the aqueous extracts of the stem barks and rootparts of B. purpurea only contained alkaloids, flavonoids, and phenolics. Consistent with the phytochemical assay, the flower extract exhibited the highest total phenolic content (40.14 ± 0.65 ”g/mL GAE) and the highest flavonoid content (387.57 ± 0.63 ”g/mL CE) compared to the other parts. Consequently, the flower extract displayed the highest antioxidant activity (51.76 ± 0.32%) with DPPH radical assay, closely approaching the antioxidant activity of ascorbic acid (70.54 ± 0.51%), which served as the positive control. This significant finding highlights the potential of the B. purpurea flower as a potent source of antioxidant agents for future applications

    A first absolute chronology for Late Neolithic to Early Bronze Age Myanmar: New AMS 14C dates from Nyaung'gan and Oakaie

    No full text
    Late prehistoric archaeological research in Myanmar is in a phase of rapid expansion. Recent work by the Mission Archéologique Française au Myanmar aims to establish a reliable Neolithic to Iron Age culture-historical sequence, which can then be compared to surrounding regions of Southeast Asia. Excavations at Nyaung'gan and Oakaie in central Myanmar have provided 52 new AMS dates, which allow the creation of Myanmar's first reliable prehistoric radiometric chronology. They have also identified the Neolithic to Bronze Age transition in central Myanmar, which is of critical importance in understanding long-range interactions at the national, regional and inter-regional level. This research provides the first significant step towards placing late prehistoric Myanmar in its global context

    A first absolute chronology for Late Neolithic to Early Bronze Age Myanmar: new AMS C-14 dates from Nyaung'gan and Oakaie

    No full text
    Late prehistoric archaeological research in Myanmar is in a phase of rapid expansion. Recent work by the Mission Archeologique Francaise au Myanmar aims to establish a reliable Neolithic to Iron Age culture-historical sequence, which can then be compared to surrounding regions of Southeast Asia. Excavations at Nyaung'gan and Oakaie in central Myanmar have provided 52 new AMS dates, which allow the creation of Myanmar's first reliable prehistoric radiometric chronology. They have also identified the Neolithic to Bronze Age transition in central Myanmar, which is of critical importance in understanding long-range interactions at the national, regional and inter-regional level. This research provides the first significant step towards placing late prehistoric Myanmar in its global context

    Development of an updated global land in situ‐based data set of temperature and precipitation extremes: HadEX3

    Get PDF
    We present the second update to a data set of gridded land‐based temperature and precipitation extremes indices: HadEX3. This consists of 17 temperature and 12 precipitation indices derived from daily, in situ observations and recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). These indices have been calculated at around 7,000 locations for temperature and 17,000 for precipitation. The annual (and monthly) indices have been interpolated on a 1.875°×1.25° longitude‐latitude grid, covering 1901–2018. We show changes in these indices by examining ”global”‐average time series in comparison with previous observational data sets and also estimating the uncertainty resulting from the nonuniform distribution of meteorological stations. Both the short and long time scale behavior of HadEX3 agrees well with existing products. Changes in the temperature indices are widespread and consistent with global‐scale warming. The extremes related to daily minimum temperatures are changing faster than the maximum. Spatial changes in the linear trends of precipitation indices over 1950–2018 are less spatially coherent than those for temperature indices. Globally, there are more heavy precipitation events that are also more intense and contribute a greater fraction to the total. Some of the indices use a reference period for calculating exceedance thresholds. We present a comparison between using 1961–1990 and 1981–2010. The differences between the time series of the temperature indices observed over longer time scales are shown to be the result of the interaction of the reference period with a warming climate. The gridded netCDF files and, where possible, underlying station indices are available from www.metoffice.gov.uk/hadobs/hadex3 and www.climdex.org.Robert Dunn was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra (GA01101) and thanks Nick Rayner and Lizzie Good for helpful comments on the manuscript. Lisa Alexander is supported by the Australian Research Council (ARC) Grants DP160103439 and CE170100023. Markus Donat acknowledges funding by the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 Grant Reference RYC‐2017‐22964. Mohd Noor'Arifin Bin Hj Yussof and Muhammad Khairul Izzat Bin Ibrahim thank the Brunei Darussalam Meteorological Department (BDMD). Ying Sun was supported by China funding agencies 2018YFA0605604 and 2018YFC1507702. Fatemeh Rahimzadeh and Mahbobeh Khoshkam thank I.R. of Iranian Meteorological Organization (IRIMO) and the Atmospheric Science and Meteorological Organization Research Center (ASMERC) for Data and also sharing their experiences, especially Abbas Rangbar. Jose Marengo was supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant 465501/2014‐1, FAPESP Grants 2014/50848‐9 and 2015/03804‐9, and the National Coordination for High Level Education and Training (CAPES) Grant 88887.136402‐00INCT. The team that worked on the data in West Africa received funding from the UK's National Environment Research Council (NERC)/Department for International Development DFID) Future Climate For Africa programme, under the AMMA‐2050 project (Grants NE/M020428/1 and NE/M019969/1). Data from Southeast Asia (excl. Indonesia) was supported by work on using ClimPACT2 during the Second Workshop on ASEAN Regional Climate Data, Analysis and Projections (ARCDAP‐2), 25–29 March 2019, Singapore, jointly funded by Meteorological Service Singapore and WMO through the Canada‐Climate Risk and Early Warning Systems (CREWS) initiative. This research was supported by Thai Meteorological Department (TMD) and Thailand Science Research and Innovation (TSRI) under Grant RDG6030003. Daily data for Mexico were provided by the Servicio Meteorológico Nacional (SMN) of Comisión Nacional del Agua (CONAGUA). We acknowledge the data providers in the ECA&D project (https://www.ecad.eu), the SACA&D project (https://saca-bmkg.knmi.nl), and the LACA&D project (https://ciifen.knmi.nl). We thank the three anonymous reviewers for their detailed comments which improved the manuscript.Peer ReviewedPostprint (published version

    Development of an Updated Global Land In Situ‐Based Data Set of Temperature and Precipitation Extremes: HadEX3

    No full text
    We present the second update to a data set of gridded land‐based temperature and precipitation extremes indices: HadEX3. This consists of 17 temperature and 12 precipitation indices derived from daily, in situ observations and recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). These indices have been calculated at around 7,000 locations for temperature and 17,000 for precipitation. The annual (and monthly) indices have been interpolated on a 1.875°×1.25° longitude‐latitude grid, covering 1901–2018. We show changes in these indices by examining ”global”‐average time series in comparison with previous observational data sets and also estimating the uncertainty resulting from the nonuniform distribution of meteorological stations. Both the short and long time scale behavior of HadEX3 agrees well with existing products. Changes in the temperature indices are widespread and consistent with global‐scale warming. The extremes related to daily minimum temperatures are changing faster than the maximum. Spatial changes in the linear trends of precipitation indices over 1950–2018 are less spatially coherent than those for temperature indices. Globally, there are more heavy precipitation events that are also more intense and contribute a greater fraction to the total. Some of the indices use a reference period for calculating exceedance thresholds. We present a comparison between using 1961–1990 and 1981–2010. The differences between the time series of the temperature indices observed over longer time scales are shown to be the result of the interaction of the reference period with a warming climate. The gridded netCDF files and, where possible, underlying station indices are available from www.metoffice.gov.uk/hadobs/hadex3 and www.climdex.org.Robert Dunn was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra (GA01101) and thanks Nick Rayner and Lizzie Good for helpful comments on the manuscript. Lisa Alexander is supported by the Australian Research Council (ARC) Grants DP160103439 and CE170100023. Markus Donat acknowledges funding by the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 Grant Reference RYC‐2017‐22964. Mohd Noor'Arifin Bin Hj Yussof and Muhammad Khairul Izzat Bin Ibrahim thank the Brunei Darussalam Meteorological Department (BDMD). Ying Sun was supported by China funding agencies 2018YFA0605604 and 2018YFC1507702. Fatemeh Rahimzadeh and Mahbobeh Khoshkam thank I.R. of Iranian Meteorological Organization (IRIMO) and the Atmospheric Science and Meteorological Organization Research Center (ASMERC) for Data and also sharing their experiences, especially Abbas Rangbar. Jose Marengo was supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant 465501/2014‐1, FAPESP Grants 2014/50848‐9 and 2015/03804‐9, and the National Coordination for High Level Education and Training (CAPES) Grant 88887.136402‐00INCT. The team that worked on the data in West Africa received funding from the UK's National Environment Research Council (NERC)/Department for International Development DFID) Future Climate For Africa programme, under the AMMA‐2050 project (Grants NE/M020428/1 and NE/M019969/1). Data from Southeast Asia (excl. Indonesia) was supported by work on using ClimPACT2 during the Second Workshop on ASEAN Regional Climate Data, Analysis and Projections (ARCDAP‐2), 25–29 March 2019, Singapore, jointly funded by Meteorological Service Singapore and WMO through the Canada‐Climate Risk and Early Warning Systems (CREWS) initiative. This research was supported by Thai Meteorological Department (TMD) and Thailand Science Research and Innovation (TSRI) under Grant RDG6030003. Daily data for Mexico were provided by the Servicio Meteorológico Nacional (SMN) of Comisión Nacional del Agua (CONAGUA). We acknowledge the data providers in the ECA&D project (https://www.ecad.eu), the SACA&D project (https://saca-bmkg.knmi.nl), and the LACA&D project (https://ciifen.knmi.nl). We thank the three anonymous reviewers for their detailed comments which improved the manuscript.Peer ReviewedPostprint (published version
    corecore