198 research outputs found

    Critical quality attributes (CQAs) of a therapeutic antibody produced from integrated continuous bioprocessing

    Get PDF
    The integrated continuous bioprocess provides an innovative way to produce protein drugs with flexibility and efficiency. However, during the long-term cultivation and complicated production, how to ensure the process stability and product quality is critically important. In this study, the monoclonal antibody (mAb) was produced in a bioreactor operated in a perfusion mode utilizing the ATF cell retention system for up to 32 days. The 2L harvest per day starting at day 10 was continuously purified using the 3-column periodic counter-current (PCC) chromatography system. The first protein A capture purification was performed with the dynamic binding capacity of 50% breakthrough around 60 mg mAb/mL of resin (vs 20 mg/mL resin for batch purification) for 120 cycles or 360 column operations followed by a polishing step of mixed mode chromatography for 20 cycles. The process and quality attributes were monitored daily. The results demonstrate consistency in both the purification process and the mAb qualities (in the aspects of product integrity, aggregates, and glycan profile) between PCC and batch purifications. Culture-related charge heterogeneity was observed accompanied by an increase of bioreactor harvest time using both batch and PCC purification processes. In addition, the impurities such as endotoxin and HCP were also monitored while under this high capacity utilization of chromatography resins. By sharing the insights of process and quality attributes, we hope to provide better understanding on the process-related heterogeneity between batch and continuous production and/or purification

    Phase-controlled vibrational laser percussion drilling

    Get PDF
    In this study, a phase-controlled vibration was applied to a laser percussion drilling process to improve the depth of penetration. To investigate the effects of phase-controlled vibration on the depth of penetration, a novel method that controls the phase offset between the accelerating motion and the emission of the laser beam was developed. The method is based on coaxial sensing of the working surface using a photodiode, coupled with microcontroller control of the drilling laser operation. Through real-time optical signal acquisition and analysis of laser machining processes, correlations between the accelerating motion and the emission of the laser beam were simultaneously obtained. All of the processing work was performed in air at standard atmospheric conditions, and gas assist was not used. This study showed that the application of phase-controlled vibration improved the depth of penetration in laser percussion machining and can contribute to the development of precision drilling in the industry

    IKKβ Suppression of TSC1 Links Inflammation and Tumor Angiogenesis via the mTOR Pathway

    Get PDF
    SummaryTNFα has recently emerged as a regulator linking inflammation to cancer pathogenesis, but the detailed cellular and molecular mechanisms underlying this link remain to be elucidated. The tuberous sclerosis 1 (TSC1)/TSC2 tumor suppressor complex serves as a repressor of the mTOR pathway, and disruption of TSC1/TSC2 complex function may contribute to tumorigenesis. Here we show that IKKβ, a major downstream kinase in the TNFα signaling pathway, physically interacts with and phosphorylates TSC1 at Ser487 and Ser511, resulting in suppression of TSC1. The IKKβ-mediated TSC1 suppression activates the mTOR pathway, enhances angiogenesis, and results in tumor development. We further find that expression of activated IKKβ is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. Our findings identify a pathway that is critical for inflammation-mediated tumor angiogenesis and may provide a target for clinical intervention in human cancer

    The Observation for Ocular Surface Diseases in Respiratory Care Center in One Regional Teaching Hospital in Southern Taiwan

    Get PDF
    Abstract: Purpose: To discover the incidence of ocular surface diseases in the RCC in one region hospital in southern Taiwan. Methods: A prospective study was performed from January 2014 to May 2014. We recorded the causes of admission, eyelid position, abnormal findings of the conjunctiva and cornea. Besides, we also collected data about age, sex, sedation score, the intubation or not, the ventilator setting, date of admission, endotracheal tube or tracheostomy used et al. Results: Total 30 patients were examined in RCC. The mean age of the patients was 60.5 years (range 32-82). 18 patients were male and 12 were female. 24 patients had been sedated or non-sedated with various ventilators. 6 patients were in T-piece trial. 22 patients had tube intubation and 8 patients had received tracheostomy. Mean stay time was 20.5 days. The percent of ocular surface diseases were 33.3% (10/30), and lagophthalmos was observed about 33.3% due to sedation. 23.3% (7/30) patients had conjunctival problems and 26.6% (8/30) had keratopathy. We found that 80% (8/10) patients with lagophthalmos had eye disorders. The endotracheal tube intubation group had a relatively higher incidence of ocular surface diseases (7/22;32%). If the sedation score lower than 8, 26 % patients may have eye diseases. Conclusion: The incidence of ocular surface diseases is closely related to heavy sedation or muscle relaxants. The assessment of eyelid position in relation to the ocular surface disease is the most important observation required in RCC. How to set up the routine protocol for eye care for the staff in ICU becomes valuable and serious today. We must keep in mind that prevention is always better than cure

    Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to not only identify the location of such hotspots, but also their spatial patterns.</p> <p>Methods</p> <p>In this study, we utilize spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters, and areas in which these are situated, for the 20 leading causes of death in Taiwan. In addition, we use the fit to a logistic regression model to test the characteristics of similarity and dissimilarity by gender.</p> <p>Results</p> <p>Gender is compared in efforts to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis is utilized to identify spatial cluster patterns. There is naturally great interest in discovering the relationship between the leading causes of death and well-documented spatial risk factors. For example, in Taiwan, we found the geographical distribution of clusters where there is a prevalence of tuberculosis to closely correspond to the location of aboriginal townships.</p> <p>Conclusions</p> <p>Cluster mapping helps to clarify issues such as the spatial aspects of both internal and external correlations for leading health care events. This is of great aid in assessing spatial risk factors, which in turn facilitates the planning of the most advantageous types of health care policies and implementation of effective health care services.</p

    Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics

    Get PDF
    Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology

    Epstein–Barr Virus DNase (BGLF5) induces genomic instability in human epithelial cells

    Get PDF
    Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells
    corecore