20,357 research outputs found

    A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    Get PDF
    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production

    Internally coated air-cooled gas turbine blading

    Get PDF
    Ten candidate modified nickel-aluminide coatings were developed using the slip pack process. These coatings contain additives such as silicon, chromium and columbium in a nickel-aluminum coating matrix with directionally solidified MAR-M200 + Hf as the substrate alloy. Following a series of screening tests which included strain tolerance, dynamic oxidation and hot corrosion testing, the Ni-19A1-1Cb (nominal composition) coating was selected for application to the internal passages of four first-stage turbine blades. Process development results indicate that a dry pack process is suitable for internal coating application resulting in 18 percent or less reduction in air flow. Coating uniformity, based on coated air-cooled blades, was within + or - 20 percent. Test results show that the presence of additives (silicon, chromium or columbium) appeared to improve significantly the ductility of the NiA1 matrix. However, the environmental resistance of these modified nickel-aluminides were generally inferior to the simple aluminides

    Unitarity and the Hilbert space of quantum gravity

    Full text link
    Under the premises that physics is unitary and black hole evaporation is complete (no remnants, no topology change), there must exist a one-to-one correspondence between states on future null and timelike infinity and on any earlier spacelike Cauchy surface (e.g., slices preceding the formation of the hole). We show that these requirements exclude a large set of semiclassical spacetime configurations from the Hilbert space of quantum gravity. In particular, the highest entropy configurations, which account for almost all of the volume of semiclassical phase space, would not have quantum counterparts, i.e. would not correspond to allowed states in a quantum theory of gravity.Comment: 7 pages, 3 figures, revtex; minor changes in v2 (version published in Class. Quant. Grav.

    Interpenetration as a Mechanism for Liquid-Liquid Phase Transitions

    Full text link
    We study simple lattice systems to demonstrate the influence of interpenetrating bond networks on phase behavior. We promote interpenetration by using a Hamiltonian with a weakly repulsive interaction with nearest neighbors and an attractive interaction with second-nearest neighbors. In this way, bond networks will form between second-nearest neighbors, allowing for two (locally) distinct networks to form. We obtain the phase behavior from analytic solution in the mean-field approximation and exact solution on the Bethe lattice. We compare these results with exact numerical results for the phase behavior from grand canonical Monte Carlo simulations on square, cubic, and tetrahedral lattices. All results show that these simple systems exhibit rich phase diagrams with two fluid-fluid critical points and three thermodynamically distinct phases. We also consider including third-nearest-neighbor interactions, which give rise to a phase diagram with four critical points and five thermodynamically distinct phases. Thus the interpenetration mechanism provides a simple route to generate multiple liquid phases in single-component systems, such as hypothesized in water and observed in several model and experimental systems. Additionally, interpenetration of many such networks appears plausible in a recently considered material made from nanoparticles functionalized by single strands of DNA.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Transverse force generated by an electric field and transverse charge imbalance in spin-orbit coupled systems

    Full text link
    We use linear response theory to study the transverse force generated by an external electric field and hence possible charge Hall effect in spin-orbit coupled systems. In addition to the Lorentz force that is parallel to the electric field, we find that the transverse force perpendicular to the applied electric field may not vanish in a system with an anisotropic energy dispersion. Surprisingly, in contrast to the previous results, the transverse force generated by the electric field does not depend on the spin current, but in general, it is related to the second derivative of energy dispersion only. Furthermore, we find that the transverse force does not vanish in the Rashba-Dresselhaus system. Therefore, the non-vanishing transverse force acts as a driving force and results in charge imbalance at the edges of the sample. The estimated ratio of the Hall voltage to the longitudinal voltage is ∼10−3\sim 10^{-3}. The disorder effect is also considered in the study of the Rashba-Dresselhaus system. We find that the transverse force vanishes in the presence of impurities in this system because the vertex correction and the anomalous velocity of the electron accidently cancel each other

    Thermal gravity, black holes and cosmological entropy

    Full text link
    Taking seriously the interpretation of black hole entropy as the logarithm of the number of microstates, we argue that thermal gravitons may undergo a phase transition to a kind of black hole condensate. The phase transition proceeds via nucleation of black holes at a rate governed by a saddlepoint configuration whose free energy is of order the inverse temperature in Planck units. Whether the universe remains in a low entropy state as opposed to the high entropy black hole condensate depends sensitively on its thermal history. Our results may clarify an old observation of Penrose regarding the very low entropy state of the universe.Comment: 5 pages, 2 figures, RevTex. v4: to appear in Phys. Rev.

    Baryon resonances and hadronic interactions in a finite volume

    Get PDF
    In a finite volume, resonances and multi-hadron states are identified by discrete energy levels. When comparing the results of lattice QCD calculations to scattering experiments, it is important to have a way of associating the energy spectrum of the finite-volume lattice with the asymptotic behaviour of the S-matrix. A new technique for comparing energy eigenvalues with scattering phase shifts is introduced, which involves the construction of an exactly solvable matrix Hamiltonian model. The model framework is applied to the case of Δ→Nπ\Delta\rightarrow N\pi decay, but is easily generalized to include multi-channel scattering. Extracting resonance parameters involves matching the energy spectrum of the model to that of a lattice QCD calculation. The resulting fit parameters are then used to generate phase shifts. Using a sample set of pseudodata, it is found that the extraction of the resonance position is stable with respect to volume for a variety of regularization schemes, and compares favorably with the well-known Luescher method. The model-dependence of the result is briefly investigated.Comment: 7 pages, 3 figures. Talk presented at the 30th International Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns, Australi

    Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions

    Full text link
    We study the transport properties of a graphene ferromagnet-insulator superconductor (FIS) junction within the Blonder-Tinkham-Klapwijk formalism by solving spin-polarized Dirac-Bogoliubov-de-Gennes equation. We find that the retro and specular Andreev reflections in the graphene FIS junction are drastically modified in the presence of exchange interaction and that the spin-polarization (PTP_T) of tunneling current can be tuned from the positive to negative value by bias voltage (VV). In the thin-barrier limit, the conductance GG of a graphene FIS junction oscillates as a function of barrier strength χ\chi. Both the amplitude and phase of the conductance oscillation varies with the exchange energy EexE_{ex}. For Eex<EFE_{ex}<E_F (Fermi energy), the amplitude of oscillation decreases with EexE_{ex}. For Eexc>Eex>EFE_{ex}^{c}>E_{ex}>E_F, the amplitude of oscillation increases with EexE_{ex}, where Eexc=2EF+U0E_{ex}^{c}=2E_{F}+U_{0} (U0U_{0} is the applied electrostatic potential on the superconducting segment of the junction). For Eex>EexcE_{ex} > E_{ex}^{c}, the amplitude of oscillation decreases with EexE_{ex} again. Interestingly, a universal phase difference of π/2\pi/2 in χ\chi exists between the G−χG-\chi curves for Eex>EFE_{ex}>E_F and Eex<EFE_{ex}<E_F. Finally, we find that the transitions between retro and specular Andreev reflections occur at eV=∣EF−Eex∣eV=|E_{F}-E_{ex}| and eV=Eex+EFeV=E_{ex}+E_{F}, and hence the singular behavior of the conductance near these bias voltages results from the difference in transport properties between specular and retro Andreev reflections.Comment: Accepted for publication in Physical Review

    Progress Report on Dynamics of Particulate Matter in Fluid Suspensions

    Get PDF
    This report describes work performed during the period from August 1, 1949 to November, 1950. When the project was started, it was financed for one year with the intention of continuing it for a second year, and the program was planned accordingly. However, after about three months of operation, it became necessary for reasons of economy to reconsider the original plans, with the result that the funds for the first year's operation were reduced and plans for continuing the work beyond the first year were dropped. In the early summer of 1950, the U. S. Air Force indicated its interest in sponsoring the work. In view of this prospect, the Office of Naval Research (ONR) allotted funds for an additional three-months' period to allow time for working out the necessary contractual arrangements with the Air Force for continuing the work. These arrangements were worked out and the studies were continued under contract with the Office of Air Research, starting November 1, 1950
    • …
    corecore