34,384 research outputs found

    Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    Get PDF
    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses

    A new VLSI architecture for a single-chip-type Reed-Solomon decoder

    Get PDF
    A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain

    A VLSI architecture of a binary updown counter

    Get PDF
    A pipeline binary updown counter with many bits is developed which can be used in a variety of applications. One such application includes the design of a digital correlator for very long baseline interferometry (VLBI). The advantage of the presently conceived approach over the previous techniques is that the number of logic operations involved in the design of the binary updown counter can be reduced substantially. The architecture design using these methods is regular, simple, expandable and, therefore, naturally suitable for VLSI implementation

    Space-time translational gauge identities in Abelian Yang-Mills gravity

    Full text link
    We derive and calculate the space-time translational gauge identities in quantum Yang-Mills gravity with a general class of gauge conditions involving two arbitrary parameters. These identities of the Abelian group of translation are a generalization of Ward-Takahasi-Fradkin identities and important for general discussions of possible renormalization of Yang-Mills gravity with translational gauge symmetry. The gauge identities in Yang-Mills gravity with a general class of gauge conditions are substantiated by explicit calculations.Comment: 15 pages. To be published in The European Physical Journal - Plus (2012

    Light weight fire resistant graphite composites

    Get PDF
    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft

    Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information

    Get PDF
    Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been traditionally performed using information from gauge observations. This approach has proven to be a useful tool in planning and design for the regions where sufficient observational data are available. However, in many parts of the world where ground-based observations are sparse and limited in length, the effectiveness of statistical methods for such applications is highly limited. The sparse gauge networks over those regions, especially over remote areas and high-elevation regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis. In this study, the PERSIANN-CDR dataset is used to propose a mechanism, by which satellite precipitation information could be used for rainfall frequency analysis and development of DDF curves. In the proposed framework, we first adjust the extreme precipitation time series estimated by PERSIANN-CDR using an elevation-based correction function, then use the adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our proposed approach in 20 river basins in the United States with different climatic conditions and elevations. Bias adjustment results indicate that the correction model can significantly reduce the biases in PERSIANN-CDR estimates of annual maximum series, especially for high elevation regions. Comparison of the extracted DDF curves from both the original and adjusted PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows that the extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-based estimates at the tested basins. The median relative errors of the frequency estimates at the studied basins were less than 20% in most cases. Our proposed framework has the potential for constructing DDF curves for regions with limited or sparse gauge-based observations using remotely sensed precipitation information, and the spatiotemporal resolution of the adjusted PERSIANN-CDR data provides valuable information for various applications in remote and high elevation areas

    Liquid sloshing in elastic containers

    Get PDF
    Coupled oscillations of elastic container partially filled with incompressible liqui

    Metastable Cosmic Strings in Realistic Models

    Get PDF
    We investigate the stability of the electroweak Z-string at high temperatures. Our results show that while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. We then consider phenomenologically viable models based on the gauge group SU(2)L×SU(2)R×U(1)B−LSU(2)_L \times SU(2)_R \times U(1)_{B-L} and show that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. We also show that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.Comment: 24 pages, 2 figures (available on request); HUTP-92/A032, Fermilab-Pub-92/228-
    • …
    corecore